2,134 research outputs found

    Behavioural effects of hypersaline exposure on the lobster Homarus gammarus (L) and the crab Cancer pagurus (L)

    Get PDF
    There is scarce existing information in the literature regarding the responses of any marine species, especially commercially valuable decapod crustaceans, to hypersalinity. Hypersaline discharges due to solute mining and desalination are increasing in temperate areas, hence the behavioural responses of the edible brown crab, Cancer pagurus, and the European lobster, Homarus gammarus, were studied in relation to a marine discharge of highly saline brine using a series of preference tests. Both species had a significant behavioural response to highly saline brine, being able to detect and avoid areas of hypersalinity once their particular threshold salinity was reached (salinity 50 for C. pagurus and salinity 45 for H. gammarus). The presence of shelters had no effect on this response and both species avoided hypersaline areas, even when shelters were provided there. If the salinity of commercial effluent into the marine environment exceeds the behavioural thresholds found here, it is likely that adults of these species will relocate to areas of more favourable salinity. In management terms it is advisable to ensure that any hypersaline discharges are limited to the lowest tolerance of all the economically valuable species in the area to avoid loss of revenue in fishery areas

    Differential Effects of Increasing Salinity on Germination and Seedling Growth of Native and Exotic Invasive Cordgrasses

    Get PDF
    Soil salinity is a key environmental factor influencing germination and seedling establishment in salt marshes. Global warming and sea level rise are changing estuarine salinity, and may modify the colonization ability of halophytes. We evaluated the effects of increasing salinity on germination and seedling growth of native Spartina maritima and invasive S. densiflora from wetlands of the Odiel-Tinto Estuary. Responses were assessed following salinity exposure from fresh water to hypersaline conditions and germination recovery of non-germinated seeds when transferred to fresh water. The germination of both species was inhibited and delayed at high salinities, while pre-exposure to salinity accelerated the speed of germination in recovery assays compared to non-pre-exposed seeds. S. densiflora was more tolerant of salinity at germination than S. maritima. S. densiflora was able to germinate at hypersalinity and its germination percentage decreased at higher salinities compared to S. maritima. In contrast, S. maritima showed higher salinity tolerance in relation to seedling growth. Contrasting results were observed with differences in the tidal elevation of populations. Our results suggest S. maritima is a specialist species with respect to salinity, while S. densiflora is a generalist capable of germination of growth under suboptimal conditions. Invasive S. densiflora has greater capacity than native S. maritima to establish from seed with continued climate change and sea level rise.Ministerio de Educación, Cultura y Deporte (FPU14/06556

    Transgressivity in Key Functional Traits Rather Than Phenotypic Plasticity Promotes Stress Tolerance in A Hybrid Cordgrass

    Get PDF
    Hybridization might promote offspring fitness via a greater tolerance to environmental stressors due to heterosis and higher levels of phenotypic plasticity. Thus, analyzing the phenotypic expression of hybrids provides an opportunity to elucidate further plant responses to environmental stress. In the case of coastal salt marshes, sea level rise subjects hybrids, and their parents, to longer tidal submergence and higher salinity. We analyzed the phenotypic expression patterns in the hybrid Spartina densiflora x foliosa relative to its parental species, native S. foliosa, and invasive S. densiflora, from the San Francisco Estuary when exposed to contrasting salinities and inundations in a mesocosm experiment. 37% of the recorded traits displayed no variability among parents and hybrids, 3% showed an additive inheritance, 37% showed mid-parent heterosis, 18% showed best-parent heterosis, and 5% presented worst-parent heterosis. Transgressivity, rather than phenotypic plasticity, in key functional traits of the hybrid, such as tiller height, conveyed greater stress tolerance to the hybrid when compared to the tolerance of its parents. As parental trait variability increased, phenotypic transgressivity of the hybrid increased and it was more important in response to inundation than salinity. Increases in salinity and inundation associated with sea level rise will amplify the superiority of the hybrid over its parental species. These results provide evidence of transgressive traits as an underlying source of adaptive variation that can facilitate plant invasions. The adaptive evolutionary process of hybridization is thought to support an increased invasiveness of plant species and their rapid evolution

    Mechanisms of selenomethionine developmental toxicity and the impacts of combined hypersaline conditions on Japanese medaka (Oryzias latipes).

    Get PDF
    Selenium (Se) is an essential micronutrient that can cause embryotoxicty at levels 7-30 times above essential concentrations. Exposure to hypersaline conditions and 50 μM selenomethionine (SeMet) decreased embryo hatch and depleted glutathione in Japanese medaka embryos without affecting Se accumulation. To better understand the impacts of nonchemical stressors on developmental toxicity of Se in fish, several adverse outcome pathways were evaluated in the Japanese medaka (Oryzias latipes). We treated medaka embryos at 12 h post fertilization with 50 μM SeMet for 12 hours in freshwater or in 13 ppth hypersalinity and evaluated the contributions of oxidative stress, the unfolded protein response and apoptosis to reduced hatch. Exposure to SeMet and hypersalinity decreased embryo hatch to 3.7% ± 1.95, and induced teratogenesis in 100% ± 0 of hatched embryos. In contrast, treatments of freshwater, saltwater, and SeMet in freshwater resulted in 89.8% ± 3.91-86.7% ± 3.87 hatch, and no significant increase in deformities. We found no significant differences in lipid peroxidation, indicating that oxidative stress may not be responsible for the observed toxicity in embryos at this time point (24 h). Although significant changes in apoptosis were not observed, we witnessed up to 100 fold increases in transcripts of the endoplasmic reticulum (ER) chaperone, immunoglobulin binding protein (BiP) and trends toward increasing downstream signals, activating transcription factor 4 (ATF4) and ATF6 indicating potential contributions of the unfolded protein response to the effects of SeMet and hypersaline conditions. These data indicate that multiple adverse outcome pathways may be responsible for the developmental toxicity of Se and salinity, and these pathways may be time dependent

    Phenotypic plasticity of polyploid plant species promotes transgressive behaviour in their hybrids

    Get PDF
    Hybridization is a frequent process that leads to relevant evolutionary consequences, but there is a lack of studies regarding the relationships of the variability of the response of parental plant species to environmental gradients and the responses of their hybrids at a phenotypic level. We designed an experiment in which we exposed two reciprocal cordgrass hybrids, Spartina maritima × densiflora and S. densiflora × maritima, and their parental species to four salinity concentrations for 30 days. The main objectives were to compare the performance of the hybrids with that of their parents, to distinguish the phenotypic inheritance operating in the hybrids and to analyse the relationships between the variability in the responses of the parents and the responses of their hybrids to salinity. We characterized the responses and the degree of variability for 37 foliar traits. Both hybrids presented greater salinity tolerance than their parents, showing their highest percentage of transgressive traits at both extremes of the salinity gradient. When the parental plants themselves showed a more plastic response for a given trait, there was a greater chance that their hybrid developed a transgressive behaviour for this trait. This finding supports a new focus to be applied for the artificial development of vigorous hybrid crops

    Variation and Uncertainty in Evaporation from a Subtropical Estuary: Florida Bay

    Get PDF
    Variation and uncertainty in estimated evaporation was determined over time and between two locations in Florida Bay, a subtropical estuary. Meteorological data were collected from September 2001 to August 2002 at Rabbit Key and Butternut Key within the Bay. Evaporation was estimated using both vapor flux and energy budget methods. The results were placed into a long-term context using 33 years of temperature and rainfall data collected in south Florida. Evaporation also was estimated from this long-term data using an empirical formula relating evaporation to clear sky solar radiation and air temperature. Evaporation estimates for the 12-mo period ranged from 144 to 175 cm yr21, depending on location and method, with an average of 163 cm yr21 (6 9%). Monthly values ranged from 9.2 to 18.5 cm, with the highest value observed in May, corresponding with the maximum in measured net radiation. Uncertainty estimates derived from measurement errors in the data were as much as 10%, and were large enough to obscure differences in evaporation between the two sites. Differences among all estimates for any month indicate the overall uncertainty in monthly evaporation, and ranged from 9% to 26%. Over a 33-yr period (1970–2002), estimated annual evaporation from Florida Bay ranged from 148 to 181 cm yr21, with an average of 166 cm yr21. Rainfall was consistently lower in Florida Bay than evaporation, with a long-term average of 106 cm yr21. Rainfall considered alone was uncorrelated with evaporation at both monthly and annual time scales; when the seasonal variation in clear sky radiation was also taken into account both net radiation and evaporation were significantly suppressed in months with high rainfall

    Challenges for the development of a biotic ligand model predicting copper toxicity in estuaries and seas

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2011 SETAC.An effort is ongoing to develop a biotic ligand model (BLM) that predicts copper (Cu) toxicity in estuarine and marine environments. At present, the BLM accounts for the effects of water chemistry on Cu speciation, but it does not consider the influence of water chemistry on the physiology of the organisms. We discuss how chemistry affects Cu toxicity not only by controlling its speciation, but also by affecting the osmoregulatory physiology of the organism, which varies according to salinity. In an attempt to understand the mechanisms of Cu toxicity and predict its impacts, we explore the hypothesis that the common factor linking the main toxic effects of Cu is the enzyme carbonic anhydrase (CA), because it is a Cu target with multiple functions and salinity-dependent expression and activity. According to this hypothesis, the site of action of Cu in marine fish may be not only the gill, but also the intestine, because in this tissue CA plays an important role in ion transport and water adsorption. Therefore, the BLM of Cu toxicity to marine fish should also consider the intestine as a biotic ligand. Finally, we underline the need to incorporate the osmotic gradient into the BLM calculations to account for the influence of physiology on Cu toxicity.Brunel Universit

    Conceptual model of salt marsh management on Merritt Island National Wildlife Refuge, Florida: final report

    Get PDF
    Diking and holding water on salt marshes ("impounding" the marsh) is a management technique used on Merritt Island National Wildlife Refuge (MINWR) and elsewhere in the Southeast to: a) prevent the reproduction of saltmarsh mosquitos, and b) attract wintertering waterfowl and other marsh, shore, and wading birds. Because of concern that diking and holding water may interfere with the production of estuarine fish and shellfish, impoundment managers are being asked to consider altering management protocol to reduce or eliminate any such negative influence. How to change protocol and preserve effective mosquito control and wildlife management is a decision of great complexity because: a) the relationships between estuarine organisms and the fringing salt marshes at the land-water interface are complex, and b) impounded marshes are currently good habitat for a variety of species of fish and wildlife. Most data collection by scientists and managers in the area has not been focused on this particular problem. Furthermore, collection of needed data may not be possible before changes in protocol are demanded. Therefore, the purpose of this document is two-fold: 1) to suggest management alternatives, given existing information, and 2) to help identify research needs that have a high probability of leading to improved simultaneous management of mosquitos, waterfowl, other wildlife, freshwater fish, and estuarine fish and shellfish on the marshland of the Merritt Island National Wildlife Refuge. (92 page document
    corecore