52 research outputs found

    Complexity and robustness in hypernetwork models of metabolism

    Get PDF
    Metabolic reaction data is commonly modelled using a complex network approach, whereby nodes represent the chemical species present within the organism of interest, and connections are formed between those nodes participating in the same chemical reaction. Unfortunately, such an approach provides an inadequate description of the metabolic process in general, as a typical chemical reaction will involve more than two nodes, thus risking over-simplification of the the system of interest in a potentially significant way. In this paper, we employ a complex hypernetwork formalism to investigate the robustness of bacterial metabolic hypernetworks by extending the concept of a percolation process to hypernetworks. Importantly, this provides a novel method for determining the robustness of these systems and thus for quantifying their resilience to random attacks/errors. Moreover, we performed a site percolation analysis on a large cohort of bacterial metabolic networks and found that hypernetworks that evolved in more variable enviro nments displayed increased levels of robustness and topological complexity

    AI-driven Hypernetwork of Organic Chemistry: Network Statistics and Applications in Reaction Classification

    Full text link
    Rapid discovery of new reactions and molecules in recent years has been facilitated by the advancements in high throughput screening, accessibility to a much more complex chemical design space, and the development of accurate molecular modeling frameworks. A holistic study of the growing chemistry literature is, therefore, required that focuses on understanding the recent trends and extrapolating them into possible future trajectories. To this end, several network theory-based studies have been reported that use a directed graph representation of chemical reactions. Here, we perform a study based on representing chemical reactions as hypergraphs where the hyperedges represent chemical reactions and nodes represent the participating molecules. We use a standard reactions dataset to construct a hypernetwork and report its statistics such as degree distributions, average path length, assortativity or degree correlations, PageRank centrality, and graph-based clusters (or communities). We also compute each statistic for an equivalent directed graph representation of reactions to draw parallels and highlight differences between the two. To demonstrate the AI applicability of hypergraph reaction representation, we generate dense hypergraph embeddings and use them in the reaction classification problem. We conclude that the hypernetwork representation is flexible, preserves reaction context, and uncovers hidden insights that are otherwise not apparent in a traditional directed graph representation of chemical reactions

    Attributed Stream Hypergraphs: temporal modeling of node-attributed high-order interactions

    Full text link
    Recent advances in network science have resulted in two distinct research directions aimed at augmenting and enhancing representations for complex networks. The first direction, that of high-order modeling, aims to focus on connectivity between sets of nodes rather than pairs, whereas the second one, that of feature-rich augmentation, incorporates into a network all those elements that are driven by information which is external to the structure, like node properties or the flow of time. This paper proposes a novel toolbox, that of Attributed Stream Hypergraphs (ASHs), unifying both high-order and feature-rich elements for representing, mining, and analyzing complex networks. Applied to social network analysis, ASHs can characterize complex social phenomena along topological, dynamic and attributive elements. Experiments on real-world face-to-face and online social media interactions highlight that ASHs can easily allow for the analyses, among others, of high-order groups' homophily, nodes' homophily with respect to the hyperedges in which nodes participate, and time-respecting paths between hyperedges.Comment: Submitted to "Applied Network Science

    Hyperlink prediction via local random walks and Jensen-Shannon divergence

    Full text link
    Many real-world systems involving higher-order interactions can be modeled by hypergraphs, where vertices represent the systemic units and hyperedges describe the interactions among them. In this paper, we focus on the problem of hyperlink prediction which aims at inferring missing hyperlinks based on observed hyperlinks. We propose three similarity indices for hyperlink prediction based on local random walks and Jensen-Shannon divergence. Numerical experiments show that the proposed indices outperform the state-of-the-art methods on a broad range of datasets.Comment: IoP Latex, 15 pages, 1 figure

    A class of models for random hypergraphs

    Full text link
    Despite the recently exhibited importance of higher-order interactions for various processes, few flexible (null) models are available. In particular, most studies on hypergraphs focus on a small set of theoretical models. Here, we introduce a class of models for random hypergraphs which displays a similar level of flexibility of complex network models and where the main ingredient is the probability that a node belongs to a hyperedge. When this probability is a constant, we obtain a random hypergraph in the same spirit as the Erdos-Renyi graph. This framework also allows us to introduce different ingredients such as the preferential attachment for hypergraphs, or spatial random hypergraphs. In particular, we show that for the Erdos-Renyi case there is a transition threshold scaling as 1/EN1/\sqrt{EN} where NN is the number of nodes and EE the number of hyperedges. We also discuss a random geometric hypergraph which displays a percolation transition for a threshold distance scaling as rc∗∼1/Er_c^*\sim 1/\sqrt{E}. For these various models, we provide results for the most interesting measures, and also introduce new ones in the spatial case for characterizing the geometrical properties of hyperedges. These different models might serve as benchmarks useful for analyzing empirical data.Comment: 10 pages, 10 figure
    • …
    corecore