588 research outputs found

    Exploiting Structural Properties in the Analysis of High-dimensional Dynamical Systems

    Get PDF
    The physical and cyber domains with which we interact are filled with high-dimensional dynamical systems. In machine learning, for instance, the evolution of overparametrized neural networks can be seen as a dynamical system. In networked systems, numerous agents or nodes dynamically interact with each other. A deep understanding of these systems can enable us to predict their behavior, identify potential pitfalls, and devise effective solutions for optimal outcomes. In this dissertation, we will discuss two classes of high-dimensional dynamical systems with specific structural properties that aid in understanding their dynamic behavior. In the first scenario, we consider the training dynamics of multi-layer neural networks. The high dimensionality comes from overparametrization: a typical network has a large depth and hidden layer width. We are interested in the following question regarding convergence: Do network weights converge to an equilibrium point corresponding to a global minimum of our training loss, and how fast is the convergence rate? The key to those questions is the symmetry of the weights, a critical property induced by the multi-layer architecture. Such symmetry leads to a set of time-invariant quantities, called weight imbalance, that restrict the training trajectory to a low-dimensional manifold defined by the weight initialization. A tailored convergence analysis is developed over this low-dimensional manifold, showing improved rate bounds for several multi-layer network models studied in the literature, leading to novel characterizations of the effect of weight imbalance on the convergence rate. In the second scenario, we consider large-scale networked systems with multiple weakly-connected groups. Such a multi-cluster structure leads to a time-scale separation between the fast intra-group interaction due to high intra-group connectivity, and the slow inter-group oscillation, due to the weak inter-group connection. We develop a novel frequency-domain network coherence analysis that captures both the coherent behavior within each group, and the dynamical interaction between groups, leading to a structure-preserving model-reduction methodology for large-scale dynamic networks with multiple clusters under general node dynamics assumptions

    Robustness, Heterogeneity and Structure Capturing for Graph Representation Learning and its Application

    Get PDF
    Graph neural networks (GNNs) are potent methods for graph representation learn- ing (GRL), which extract knowledge from complicated (graph) structured data in various real-world scenarios. However, GRL still faces many challenges. Firstly GNN-based node classification may deteriorate substantially by overlooking the pos- sibility of noisy data in graph structures, as models wrongly process the relation among nodes in the input graphs as the ground truth. Secondly, nodes and edges have different types in the real-world and it is essential to capture this heterogeneity in graph representation learning. Next, relations among nodes are not restricted to pairwise relations and it is necessary to capture the complex relations accordingly. Finally, the absence of structural encodings, such as positional information, deterio- rates the performance of GNNs. This thesis proposes novel methods to address the aforementioned problems: 1. Bayesian Graph Attention Network (BGAT): Developed for situations with scarce data, this method addresses the influence of spurious edges. Incor- porating Bayesian principles into the graph attention mechanism enhances robustness, leading to competitive performance against benchmarks (Chapter 3). 2. Neighbour Contrastive Heterogeneous Graph Attention Network (NC-HGAT): By enhancing a cutting-edge self-supervised heterogeneous graph neural net- work model (HGAT) with neighbour contrastive learning, this method ad- dresses heterogeneity and uncertainty simultaneously. Extra attention to edge relations in heterogeneous graphs also aids in subsequent classification tasks (Chapter 4). 3. A novel ensemble learning framework is introduced for predicting stock price movements. It adeptly captures both group-level and pairwise relations, lead- ing to notable advancements over the existing state-of-the-art. The integration of hypergraph and graph models, coupled with the utilisation of auxiliary data via GNNs before recurrent neural network (RNN), provides a deeper under- standing of long-term dependencies between similar entities in multivariate time series analysis (Chapter 5). 4. A novel framework for graph structure learning is introduced, segmenting graphs into distinct patches. By harnessing the capabilities of transformers and integrating other position encoding techniques, this approach robustly capture intricate structural information within a graph. This results in a more comprehensive understanding of its underlying patterns (Chapter 6)

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Mining Butterflies in Streaming Graphs

    Get PDF
    This thesis introduces two main-memory systems sGrapp and sGradd for performing the fundamental analytic tasks of biclique counting and concept drift detection over a streaming graph. A data-driven heuristic is used to architect the systems. To this end, initially, the growth patterns of bipartite streaming graphs are mined and the emergence principles of streaming motifs are discovered. Next, the discovered principles are (a) explained by a graph generator called sGrow; and (b) utilized to establish the requirements for efficient, effective, explainable, and interpretable management and processing of streams. sGrow is used to benchmark stream analytics, particularly in the case of concept drift detection. sGrow displays robust realization of streaming growth patterns independent of initial conditions, scale and temporal characteristics, and model configurations. Extensive evaluations confirm the simultaneous effectiveness and efficiency of sGrapp and sGradd. sGrapp achieves mean absolute percentage error up to 0.05/0.14 for the cumulative butterfly count in streaming graphs with uniform/non-uniform temporal distribution and a processing throughput of 1.5 million data records per second. The throughput and estimation error of sGrapp are 160x higher and 0.02x lower than baselines. sGradd demonstrates an improving performance over time, achieves zero false detection rates when there is not any drift and when drift is already detected, and detects sequential drifts in zero to a few seconds after their occurrence regardless of drift intervals

    Tensor-variate machine learning on graphs

    Get PDF
    Traditional machine learning algorithms are facing significant challenges as the world enters the era of big data, with a dramatic expansion in volume and range of applications and an increase in the variety of data sources. The large- and multi-dimensional nature of data often increases the computational costs associated with their processing and raises the risks of model over-fitting - a phenomenon known as the curse of dimensionality. To this end, tensors have become a subject of great interest in the data analytics community, owing to their remarkable ability to super-compress high-dimensional data into a low-rank format, while retaining the original data structure and interpretability. This leads to a significant reduction in computational costs, from an exponential complexity to a linear one in the data dimensions. An additional challenge when processing modern big data is that they often reside on irregular domains and exhibit relational structures, which violates the regular grid assumptions of traditional machine learning models. To this end, there has been an increasing amount of research in generalizing traditional learning algorithms to graph data. This allows for the processing of graph signals while accounting for the underlying relational structure, such as user interactions in social networks, vehicle flows in traffic networks, transactions in supply chains, chemical bonds in proteins, and trading data in financial networks, to name a few. Although promising results have been achieved in these fields, there is a void in literature when it comes to the conjoint treatment of tensors and graphs for data analytics. Solutions in this area are increasingly urgent, as modern big data is both large-dimensional and irregular in structure. To this end, the goal of this thesis is to explore machine learning methods that can fully exploit the advantages of both tensors and graphs. In particular, the following approaches are introduced: (i) Graph-regularized tensor regression framework for modelling high-dimensional data while accounting for the underlying graph structure; (ii) Tensor-algebraic approach for computing efficient convolution on graphs; (iii) Graph tensor network framework for designing neural learning systems which is both general enough to describe most existing neural network architectures and flexible enough to model large-dimensional data on any and many irregular domains. The considered frameworks were employed in several real-world applications, including air quality forecasting, protein classification, and financial modelling. Experimental results validate the advantages of the proposed methods, which achieved better or comparable performance against state-of-the-art models. Additionally, these methods benefit from increased interpretability and reduced computational costs, which are crucial for tackling the challenges posed by the era of big data.Open Acces

    Prototype-Enhanced Hypergraph Learning for Heterogeneous Information Networks

    Full text link
    The variety and complexity of relations in multimedia data lead to Heterogeneous Information Networks (HINs). Capturing the semantics from such networks requires approaches capable of utilizing the full richness of the HINs. Existing methods for modeling HINs employ techniques originally designed for graph neural networks, and HINs decomposition analysis, like using manually predefined metapaths. In this paper, we introduce a novel prototype-enhanced hypergraph learning approach for node classification in HINs. Using hypergraphs instead of graphs, our method captures higher-order relationships among nodes and extracts semantic information without relying on metapaths. Our method leverages the power of prototypes to improve the robustness of the hypergraph learning process and creates the potential to provide human-interpretable insights into the underlying network structure. Extensive experiments on three real-world HINs demonstrate the effectiveness of our method

    Geometric Learning on Graph Structured Data

    Get PDF
    Graphs provide a ubiquitous and universal data structure that can be applied in many domains such as social networks, biology, chemistry, physics, and computer science. In this thesis we focus on two fundamental paradigms in graph learning: representation learning and similarity learning over graph-structured data. Graph representation learning aims to learn embeddings for nodes by integrating topological and feature information of a graph. Graph similarity learning brings into play with similarity functions that allow to compute similarity between pairs of graphs in a vector space. We address several challenging issues in these two paradigms, designing powerful, yet efficient and theoretical guaranteed machine learning models that can leverage rich topological structural properties of real-world graphs. This thesis is structured into two parts. In the first part of the thesis, we will present how to develop powerful Graph Neural Networks (GNNs) for graph representation learning from three different perspectives: (1) spatial GNNs, (2) spectral GNNs, and (3) diffusion GNNs. We will discuss the model architecture, representational power, and convergence properties of these GNN models. Specifically, we first study how to develop expressive, yet efficient and simple message-passing aggregation schemes that can go beyond the Weisfeiler-Leman test (1-WL). We propose a generalized message-passing framework by incorporating graph structural properties into an aggregation scheme. Then, we introduce a new local isomorphism hierarchy on neighborhood subgraphs. We further develop a novel neural model, namely GraphSNN, and theoretically prove that this model is more expressive than the 1-WL test. After that, we study how to build an effective and efficient graph convolution model with spectral graph filters. In this study, we propose a spectral GNN model, called DFNets, which incorporates a novel spectral graph filter, namely feedback-looped filters. As a result, this model can provide better localization on neighborhood while achieving fast convergence and linear memory requirements. Finally, we study how to capture the rich topological information of a graph using graph diffusion. We propose a novel GNN architecture with dynamic PageRank, based on a learnable transition matrix. We explore two variants of this GNN architecture: forward-euler solution and invariable feature solution, and theoretically prove that our forward-euler GNN architecture is guaranteed with the convergence to a stationary distribution. In the second part of this thesis, we will introduce a new optimal transport distance metric on graphs in a regularized learning framework for graph kernels. This optimal transport distance metric can preserve both local and global structures between graphs during the transport, in addition to preserving features and their local variations. Furthermore, we propose two strongly convex regularization terms to theoretically guarantee the convergence and numerical stability in finding an optimal assignment between graphs. One regularization term is used to regularize a Wasserstein distance between graphs in the same ground space. This helps to preserve the local clustering structure on graphs by relaxing the optimal transport problem to be a cluster-to-cluster assignment between locally connected vertices. The other regularization term is used to regularize a Gromov-Wasserstein distance between graphs across different ground spaces based on degree-entropy KL divergence. This helps to improve the matching robustness of an optimal alignment to preserve the global connectivity structure of graphs. We have evaluated our optimal transport-based graph kernel using different benchmark tasks. The experimental results show that our models considerably outperform all the state-of-the-art methods in all benchmark tasks

    Quantifying the structural stability of simplicial homology

    Full text link
    The homology groups of a simplicial complex reveal fundamental properties of the topology of the data or the system and the notion of topological stability naturally poses an important yet not fully investigated question. In the current work, we study the stability in terms of the smallest perturbation sufficient to change the dimensionality of the corresponding homology group. Such definition requires an appropriate weighting and normalizing procedure for the boundary operators acting on the Hodge algebra's homology groups. Using the resulting boundary operators, we then formulate the question of structural stability as a spectral matrix nearness problem for the corresponding higher-order graph Laplacian. We develop a bilevel optimization procedure suitable for the formulated matrix nearness problem and illustrate the method's performance on a variety of synthetic quasi-triangulation datasets and transportation networks.Comment: 25 pages, 9 figure

    Estimating Higher-Order Mixed Memberships via the ℓ2,∞\ell_{2,\infty} Tensor Perturbation Bound

    Full text link
    Higher-order multiway data is ubiquitous in machine learning and statistics and often exhibits community-like structures, where each component (node) along each different mode has a community membership associated with it. In this paper we propose the tensor mixed-membership blockmodel, a generalization of the tensor blockmodel positing that memberships need not be discrete, but instead are convex combinations of latent communities. We establish the identifiability of our model and propose a computationally efficient estimation procedure based on the higher-order orthogonal iteration algorithm (HOOI) for tensor SVD composed with a simplex corner-finding algorithm. We then demonstrate the consistency of our estimation procedure by providing a per-node error bound, which showcases the effect of higher-order structures on estimation accuracy. To prove our consistency result, we develop the ℓ2,∞\ell_{2,\infty} tensor perturbation bound for HOOI under independent, possibly heteroskedastic, subgaussian noise that may be of independent interest. Our analysis uses a novel leave-one-out construction for the iterates, and our bounds depend only on spectral properties of the underlying low-rank tensor under nearly optimal signal-to-noise ratio conditions such that tensor SVD is computationally feasible. Whereas other leave-one-out analyses typically focus on sequences constructed by analyzing the output of a given algorithm with a small part of the noise removed, our leave-one-out analysis constructions use both the previous iterates and the additional tensor structure to eliminate a potential additional source of error. Finally, we apply our methodology to real and simulated data, including applications to two flight datasets and a trade network dataset, demonstrating some effects not identifiable from the model with discrete community memberships
    • …
    corecore