5,084 research outputs found

    Consistency of Spectral Hypergraph Partitioning under Planted Partition Model

    Full text link
    Hypergraph partitioning lies at the heart of a number of problems in machine learning and network sciences. Many algorithms for hypergraph partitioning have been proposed that extend standard approaches for graph partitioning to the case of hypergraphs. However, theoretical aspects of such methods have seldom received attention in the literature as compared to the extensive studies on the guarantees of graph partitioning. For instance, consistency results of spectral graph partitioning under the stochastic block model are well known. In this paper, we present a planted partition model for sparse random non-uniform hypergraphs that generalizes the stochastic block model. We derive an error bound for a spectral hypergraph partitioning algorithm under this model using matrix concentration inequalities. To the best of our knowledge, this is the first consistency result related to partitioning non-uniform hypergraphs.Comment: 35 pages, 2 figures, 1 tabl

    Beyond pairwise clustering

    Get PDF
    We consider the problem of clustering in domains where the affinity relations are not dyadic (pairwise), but rather triadic, tetradic or higher. The problem is an instance of the hypergraph partitioning problem. We propose a two-step algorithm for solving this problem. In the first step we use a novel scheme to approximate the hypergraph using a weighted graph. In the second step a spectral partitioning algorithm is used to partition the vertices of this graph. The algorithm is capable of handling hyperedges of all orders including order two, thus incorporating information of all orders simultaneously. We present a theoretical analysis that relates our algorithm to an existing hypergraph partitioning algorithm and explain the reasons for its superior performance. We report the performance of our algorithm on a variety of computer vision problems and compare it to several existing hypergraph partitioning algorithms

    k-way Hypergraph Partitioning via n-Level Recursive Bisection

    Full text link
    We develop a multilevel algorithm for hypergraph partitioning that contracts the vertices one at a time. Using several caching and lazy-evaluation techniques during coarsening and refinement, we reduce the running time by up to two-orders of magnitude compared to a naive nn-level algorithm that would be adequate for ordinary graph partitioning. The overall performance is even better than the widely used hMetis hypergraph partitioner that uses a classical multilevel algorithm with few levels. Aided by a portfolio-based approach to initial partitioning and adaptive budgeting of imbalance within recursive bipartitioning, we achieve very high quality. We assembled a large benchmark set with 310 hypergraphs stemming from application areas such VLSI, SAT solving, social networks, and scientific computing. We achieve significantly smaller cuts than hMetis and PaToH, while being faster than hMetis. Considerably larger improvements are observed for some instance classes like social networks, for bipartitioning, and for partitions with an allowed imbalance of 10%. The algorithm presented in this work forms the basis of our hypergraph partitioning framework KaHyPar (Karlsruhe Hypergraph Partitioning).Comment: arXiv admin note: text overlap with arXiv:1505.0069

    Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning

    Get PDF
    Multilevel partitioning methods that are inspired by principles of multiscaling are the most powerful practical hypergraph partitioning solvers. Hypergraph partitioning has many applications in disciplines ranging from scientific computing to data science. In this paper we introduce the concept of algebraic distance on hypergraphs and demonstrate its use as an algorithmic component in the coarsening stage of multilevel hypergraph partitioning solvers. The algebraic distance is a vertex distance measure that extends hyperedge weights for capturing the local connectivity of vertices which is critical for hypergraph coarsening schemes. The practical effectiveness of the proposed measure and corresponding coarsening scheme is demonstrated through extensive computational experiments on a diverse set of problems. Finally, we propose a benchmark of hypergraph partitioning problems to compare the quality of other solvers

    Memetic Multilevel Hypergraph Partitioning

    Full text link
    Hypergraph partitioning has a wide range of important applications such as VLSI design or scientific computing. With focus on solution quality, we develop the first multilevel memetic algorithm to tackle the problem. Key components of our contribution are new effective multilevel recombination and mutation operations that provide a large amount of diversity. We perform a wide range of experiments on a benchmark set containing instances from application areas such VLSI, SAT solving, social networks, and scientific computing. Compared to the state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our new algorithm computes the best result on almost all instances
    corecore