5,084 research outputs found
Consistency of Spectral Hypergraph Partitioning under Planted Partition Model
Hypergraph partitioning lies at the heart of a number of problems in machine
learning and network sciences. Many algorithms for hypergraph partitioning have
been proposed that extend standard approaches for graph partitioning to the
case of hypergraphs. However, theoretical aspects of such methods have seldom
received attention in the literature as compared to the extensive studies on
the guarantees of graph partitioning. For instance, consistency results of
spectral graph partitioning under the stochastic block model are well known. In
this paper, we present a planted partition model for sparse random non-uniform
hypergraphs that generalizes the stochastic block model. We derive an error
bound for a spectral hypergraph partitioning algorithm under this model using
matrix concentration inequalities. To the best of our knowledge, this is the
first consistency result related to partitioning non-uniform hypergraphs.Comment: 35 pages, 2 figures, 1 tabl
Beyond pairwise clustering
We consider the problem of clustering in domains where the affinity relations are not dyadic (pairwise), but rather triadic, tetradic or higher. The problem is an instance of the hypergraph partitioning problem. We propose a two-step algorithm for solving this problem. In the first step we use a novel scheme to approximate the hypergraph using a weighted graph. In the second step a spectral partitioning algorithm is used to partition the vertices of this graph. The algorithm is capable of handling hyperedges of all orders including order two, thus incorporating information of all orders simultaneously. We present a theoretical analysis that relates our algorithm to an existing hypergraph partitioning algorithm and explain the reasons for its superior performance. We report the performance of our algorithm on a variety of computer vision problems and compare it to several existing hypergraph partitioning algorithms
k-way Hypergraph Partitioning via n-Level Recursive Bisection
We develop a multilevel algorithm for hypergraph partitioning that contracts
the vertices one at a time. Using several caching and lazy-evaluation
techniques during coarsening and refinement, we reduce the running time by up
to two-orders of magnitude compared to a naive -level algorithm that would
be adequate for ordinary graph partitioning. The overall performance is even
better than the widely used hMetis hypergraph partitioner that uses a classical
multilevel algorithm with few levels. Aided by a portfolio-based approach to
initial partitioning and adaptive budgeting of imbalance within recursive
bipartitioning, we achieve very high quality. We assembled a large benchmark
set with 310 hypergraphs stemming from application areas such VLSI, SAT
solving, social networks, and scientific computing. We achieve significantly
smaller cuts than hMetis and PaToH, while being faster than hMetis.
Considerably larger improvements are observed for some instance classes like
social networks, for bipartitioning, and for partitions with an allowed
imbalance of 10%. The algorithm presented in this work forms the basis of our
hypergraph partitioning framework KaHyPar (Karlsruhe Hypergraph Partitioning).Comment: arXiv admin note: text overlap with arXiv:1505.0069
Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning
Multilevel partitioning methods that are inspired by principles of
multiscaling are the most powerful practical hypergraph partitioning solvers.
Hypergraph partitioning has many applications in disciplines ranging from
scientific computing to data science. In this paper we introduce the concept of
algebraic distance on hypergraphs and demonstrate its use as an algorithmic
component in the coarsening stage of multilevel hypergraph partitioning
solvers. The algebraic distance is a vertex distance measure that extends
hyperedge weights for capturing the local connectivity of vertices which is
critical for hypergraph coarsening schemes. The practical effectiveness of the
proposed measure and corresponding coarsening scheme is demonstrated through
extensive computational experiments on a diverse set of problems. Finally, we
propose a benchmark of hypergraph partitioning problems to compare the quality
of other solvers
Memetic Multilevel Hypergraph Partitioning
Hypergraph partitioning has a wide range of important applications such as
VLSI design or scientific computing. With focus on solution quality, we develop
the first multilevel memetic algorithm to tackle the problem. Key components of
our contribution are new effective multilevel recombination and mutation
operations that provide a large amount of diversity. We perform a wide range of
experiments on a benchmark set containing instances from application areas such
VLSI, SAT solving, social networks, and scientific computing. Compared to the
state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our
new algorithm computes the best result on almost all instances
- …
