1,685 research outputs found

    On the heterochromatic number of hypergraphs associated to geometric graphs and to matroids

    Full text link
    The heterochromatic number hc(H) of a non-empty hypergraph H is the smallest integer k such that for every colouring of the vertices of H with exactly k colours, there is a hyperedge of H all of whose vertices have different colours. We denote by nu(H) the number of vertices of H and by tau(H) the size of the smallest set containing at least two vertices of each hyperedge of H. For a complete geometric graph G with n > 2 vertices let H = H(G) be the hypergraph whose vertices are the edges of G and whose hyperedges are the edge sets of plane spanning trees of G. We prove that if G has at most one interior vertex, then hc(H) = nu(H) - tau(H) + 2. We also show that hc(H) = nu(H) - tau(H) + 2 whenever H is a hypergraph with vertex set and hyperedge set given by the ground set and the bases of a matroid, respectively

    Finite reflection groups and graph norms

    Get PDF
    Given a graph HH on vertex set {1,2,,n}\{1,2,\cdots, n\} and a function f:[0,1]2Rf:[0,1]^2 \rightarrow \mathbb{R}, define \begin{align*} \|f\|_{H}:=\left\vert\int \prod_{ij\in E(H)}f(x_i,x_j)d\mu^{|V(H)|}\right\vert^{1/|E(H)|}, \end{align*} where μ\mu is the Lebesgue measure on [0,1][0,1]. We say that HH is norming if H\|\cdot\|_H is a semi-norm. A similar notion r(H)\|\cdot\|_{r(H)} is defined by fr(H):=fH\|f\|_{r(H)}:=\||f|\|_{H} and HH is said to be weakly norming if r(H)\|\cdot\|_{r(H)} is a norm. Classical results show that weakly norming graphs are necessarily bipartite. In the other direction, Hatami showed that even cycles, complete bipartite graphs, and hypercubes are all weakly norming. We demonstrate that any graph whose edges percolate in an appropriate way under the action of a certain natural family of automorphisms is weakly norming. This result includes all previously known examples of weakly norming graphs, but also allows us to identify a much broader class arising from finite reflection groups. We include several applications of our results. In particular, we define and compare a number of generalisations of Gowers' octahedral norms and we prove some new instances of Sidorenko's conjecture.Comment: 29 page

    The Online Disjoint Set Cover Problem and its Applications

    Full text link
    Given a universe UU of nn elements and a collection of subsets S\mathcal{S} of UU, the maximum disjoint set cover problem (DSCP) is to partition S\mathcal{S} into as many set covers as possible, where a set cover is defined as a collection of subsets whose union is UU. We consider the online DSCP, in which the subsets arrive one by one (possibly in an order chosen by an adversary), and must be irrevocably assigned to some partition on arrival with the objective of minimizing the competitive ratio. The competitive ratio of an online DSCP algorithm AA is defined as the maximum ratio of the number of disjoint set covers obtained by the optimal offline algorithm to the number of disjoint set covers obtained by AA across all inputs. We propose an online algorithm for solving the DSCP with competitive ratio lnn\ln n. We then show a lower bound of Ω(lnn)\Omega(\sqrt{\ln n}) on the competitive ratio for any online DSCP algorithm. The online disjoint set cover problem has wide ranging applications in practice, including the online crowd-sourcing problem, the online coverage lifetime maximization problem in wireless sensor networks, and in online resource allocation problems.Comment: To appear in IEEE INFOCOM 201
    corecore