3,388 research outputs found

    Benzene C−H Bond Activation in Carboxylic Acids Catalyzed by O-Donor Iridium(III) Complexes: An Experimental and Density Functional Study

    Get PDF
    The mechanism of benzene C−H bond activation by [Ir(μ-acac-O,O,C^3)(acac-O,O)(OAc)]_2 (4) and [Ir(μ-acac-O,O,C^3)(acac-O,O)(TFA)]_2 (5) complexes (acac = acetylacetonato, OAc = acetate, and TFA = trifluoroacetate) was studied experimentally and theoretically. Hydrogen−deuterium (H/D) exchange between benzene and CD_(3)COOD solvent catalyzed by 4 (ΔH^‡ = 28.3 ± 1.1 kcal/mol, ΔS^‡ = 3.9 ± 3.0 cal K^(−1) mol^(−1)) results in a monotonic increase of all benzene isotopologues, suggesting that once benzene coordinates to the iridium center, there are multiple H/D exchange events prior to benzene dissociation. B3LYP density functional theory (DFT) calculations reveal that this benzene isotopologue pattern is due to a rate-determining step that involves acetate ligand dissociation and benzene coordination, which is then followed by heterolytic C−H bond cleavage to generate an iridium-phenyl intermediate. A synthesized iridium-phenyl intermediate was also shown to be competent for H/D exchange, giving similar rates to the proposed catalytic systems. This mechanism nicely explains why hydroarylation between benzene and alkenes is suppressed in the presence of acetic acid when catalyzed by [Ir(μ-acac-O,O,C^3)(acac-O,O)(acac-C^3)]_2 (3) (Matsumoto et al. J. Am. Chem. Soc. 2000, 122, 7414). Benzene H/D exchange in CF_(3)COOD solvent catalyzed by 5 (ΔH^‡ = 15.3 ± 3.5 kcal/mol, ΔS^‡ = −30.0 ± 5.1 cal K^(−1) mol^(−1)) results in significantly elevated H/D exchange rates and the formation of only a single benzene isotopologue, (C_(6)H_(5)D). DFT calculations show that this is due to a change in the rate-determining step. Now equilibrium between coordinated and uncoordinated benzene precedes a single rate-determining heterolytic C−H bond cleavage step

    Mechanism of efficient anti-Markovnikov olefin hydroarylation catalyzed by homogeneous Ir(III) complexes

    Get PDF
    The mechanism of the hydroarylation reaction between unactivated olefins (ethylene, propylene, and styrene) and benzene catalyzed by [(R)Ir(μ-acac-O,O,C^3)-(acac-O,O)_2]_2 and [R-Ir(acac-O,O)_2(L)] (R = acetylacetonato, CH_3, CH_2CH_3, Ph, or CH_2CH_2Ph, and L = H_2O or pyridine) Ir(III) complexes was studied by experimental methods. The system is selective for generating the anti-Markovnikov product of linear alkylarenes (61 : 39 for benzene + propylene and 98 : 2 for benzene + styrene). The reaction mechanism was found to follow a rate law with first-order dependence on benzene and catalyst, but a non-linear dependence on olefin. ^(13)C-labelling studies with CH_3^(13)CH_2-Ir-Py showed that reversible β-hydride elimination is facile, but unproductive, giving exclusively saturated alkylarene products. The migration of the ^(13)C-label from the α to β-positions was found to be slower than the C–H activation of benzene (and thus formation of ethane and Ph-d_5-Ir-Py). Kinetic analysis under steady state conditions gave a ratio of the rate constants for CH activation and β-hydride elimination (k_(CH): k_β) of 0.5. The comparable magnitude of these rates suggests a common rate determining transition state/intermediate, which has been shown previously with B3LYP density functional theory (DFT) calculations. Overall, the mechanism of hydroarylation proceeds through a series of pre-equilibrium dissociative steps involving rupture of the dinuclear species or the loss of L from Ph-Ir-L to the solvento, 16-electron species, Ph-Ir(acac-O,O)_2-Sol (where Sol refers to coordinated solvent). This species then undergoes trans to cis isomerization of the acetylacetonato ligand to yield the pseudo octahedral species cis-Ph-Ir-Sol, which is followed by olefin insertion (the regioselective and rate determining step), and then activation of the C–H bond of an incoming benzene to generate the product and regenerate the catalyst

    Asymmetric additions to dienes catalysed by a dithiophosphoric acid.

    Get PDF
    Chiral Brønsted acids (proton donors) have been shown to facilitate a broad range of asymmetric chemical transformations under catalytic conditions without requiring additional toxic or expensive metals. Although the catalysts developed thus far are remarkably effective at activating polarized functional groups, it is not clear whether organic Brønsted acids can be used to catalyse highly enantioselective transformations of unactivated carbon-carbon multiple bonds. This deficiency persists despite the fact that racemic acid-catalysed Markovnikov additions to alkenes are well known chemical transformations. Here we show that chiral dithiophosphoric acids can catalyse the intramolecular hydroamination and hydroarylation of dienes and allenes to generate heterocyclic products in exceptional yield and enantiomeric excess. We present a mechanistic hypothesis that involves the addition of the acid catalyst to the diene, followed by nucleophilic displacement of the resulting dithiophosphate intermediate; we also report mass spectroscopic and deuterium labelling studies in support of the proposed mechanism. The catalysts and concepts revealed in this study should prove applicable to other asymmetric functionalizations of unsaturated systems

    Remodelling of the natural product fumagillol employing a reaction discovery approach

    Full text link
    In the search for new biologically active molecules, diversity-oriented synthetic strategies break through the limitation of traditional library synthesis by sampling new chemical space. Many natural products can be regarded as intriguing starting points for diversity-oriented synthesis, wherein stereochemically rich core structures may be reorganized into chemotypes that are distinctly different from the parent structure. Ideally, to be suited to library applications, such transformations should be general and involve few steps. With this objective in mind, the highly oxygenated natural product fumagillol has been successfully remodelled in several ways using a reaction-discovery-based approach. In reactions with amines, excellent regiocontrol in a bis-epoxide opening/cyclization sequence can be obtained by size-dependent interaction of an appropriate catalyst with the parent molecule, forming either perhydroisoindole or perhydroisoquinoline products. Perhydroisoindoles can be further remodelled by cascade processes to afford either morpholinone or bridged 4,1-benzoxazepine-containing structures.P50 GM067041 - NIGMS NIH HHS; P50 GM067041-07 - NIGMS NIH HHS; P50 GM067041-08 - NIGMS NIH HHS; P50 GM067041-09 - NIGMS NIH HH

    Diversity-oriented synthesis of 1,3-benzodiazepines

    Get PDF
    © 2017 Elsevier Ltd A concise assembly of the 1,3-benzodiazepine core from A 3 -coupling-derived propargylamines and ortho-bromophenylisocyanates is described. The developed synthetic sequence involves the addition of propargylamine to isocyanate followed by palladium-catalyzed intramolecular alkyne hydroarylation that could be accomplished in a stepwise or one-pot manner.status: publishe

    Synthesis and reactivity of N-allenyl cyanamides

    Get PDF
    N-Allenyl cyanamides have been accessed via a one-pot deoxycyanamidation–isomerization approach using propargyl alcohol and N-cyano-N-phenyl-p-methylbenzenesulfonamide. The utility of this novel class of allenamide was explored through derivatization, with hydroarylation, hydroamination, and cycloaddition protocols employed to access an array of cyanamide products that would be challenging to access using existing methods

    Sequential In-catalyzed intramolecular hydroarylation and Pd-catalyzed cross-coupling reactions using bromopropargyl aryl ethers and amines

    Get PDF
    [Abstract] A sequential one-pot indium-catalyzed intramolecular hydroarylation (IMHA) of bromopropargyl aryl ethers and amines, and palladium-catalyzed cross-coupling reaction using triorganoindium reagents (R3In) has been developed. In this transformation, the IMHA of 3-bromo-2-propynyl aryl ethers under indium(III) catalysis, proceeds regioselectively through a 6-endo dig pathway to afford 4-bromo-2Hchromenes. Subsequent palladium-catalyzed cross-coupling with R3In gives 4-substituted-2H-chromenes in one-pot. This sequential transformation was extended to 3-bromo-2-propynyl-N-tosylanilines to afford 4-substituted-1,2-dihydroquinolines. The dual-catalyzed procedure takes place efficiently with a variety of propargyl aryl ethers and amines and R3In (R = aryl, heteroaryl, alkyl or alkynyl), showing the efficiency of these organometallics and proving the compatibility of indium and palladium in catalysis.Ministerio de Economía y Competividad; CTQ2015-68369-PXunta de Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2014/04
    corecore