24,961 research outputs found
Variation in the Biomolecular Interactions of Nickel(Ii) Hydrazone Complexes Upon Tuning the Hydrazide Fragment
Three new bivalent nickel hydrazone complexes have been synthesised from the reactions of [NiCl2(PPh3)(2)] with H2L {L = dianion of the hydrazones derived from the condensation of o-hydroxynaphthaldehyde with furoic acid hydrazide (H2L1) (1)/thiophene-2-acid hydrazide (H2L2) (2)/isonicotinic acid hydrazide (H2L3) (3)} and formulated as [Ni(L-1)(PPh3)] (4), [Ni(L-2)(PPh3)] (5) and [Ni(L-3)(PPh3)] (6). Structural characterization of these compounds 4-6 were accomplished by using various physico-chemical techniques. Single crystal X-ray diffraction data of complexes 4 and 5 proved their distorted square planar geometry. In order to ascertain the potential of the above synthesised compounds towards biomolecular interactions, additional experiments involving interaction with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) were carried out. All the ligands and corresponding nickel(II) chelates have been screened for their scavenging effect towards O-2(-), OH and NO radicals. The efficiency of complexes 4-6 to arrest the growth of HeLa, HepG-2 and A431 tumour cell lines has been studied along with the cell viability test against the non-cancerous NIH 3T3 cells under in vitro conditions.University Grants Commission, New Delhi under the UGC-SAP-DRSRobert A. Welch Foundation F-0003Chemistr
Hydrazones as Singular Reagents in Asymmetric Organocatalysis
This Minireview summarizes strategies and developments regarding the use of hydrazones as reagents in asymmetric organocatalysis, their distinct roles in nucleophile–electrophile, cycloaddition, and cyclization reactions. The key structural elements governing the reactivity of these reagents in a preferred pathway will be discussed, as well as their different interactions with organocatalysts, leading to diverse activation modes. Along these studies, the synthetic equivalence of N-monoalkyl, N,N-dialkyl, and N-acyl hydrazones with several synthons is also highlighted. Emphasis is also put on the mechanistic studies performed to understand the observed reactivities. Finally, the functional group transformations performed from the available products has also been analyzed, highlighting the synthetic value of these methodologies, which served to access numerous families of valuable multifunctional compounds and nitrogen-containing heterocycles.Ministerio de Economía y Competitividad CTQ2013-48164-C2-1-P, CTQ201348164-C2-2-PEuropean FEDER fundsJunta de Andalucía 2012/FQM 107
Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives
A simple and efficient method has been developed for the synthesis of various 2-quinoxalinone-3-hydrazone derivatives using microwave irradiation technique. The series of 2-quinoxalinone-3-hydrazone derivatives synthesized, were structurally confirmed by analytical and spectral data and evaluated for their antimicrobial activities. The results showed that this skeletal framework exhibited marked potency as antimicrobial agents. The most active antibacterial agent was 3-{2-[1-(6-chloro-2-oxo-2H-chromen-3-yl)ethylidene]hydrazinyl}quinoxalin-2(1H)-one, 7 while 3-[2-(propan-2-ylidene)hydrazinyl]quinoxalin-2(1H)-one, 2 appeared to be the most active antifungal agent
Asymmetric synthesis of 2-substituted oxetan-3-ones via metalated SAMP/RAMP hydrazones
2-Substituted oxetan-3-ones can be prepared in good yields and enantioselectivities (up to 84% ee) by the metalation of the SAMP/RAMP hydrazones of oxetan-3-one, followed by reaction with a range of electrophiles that include alkyl, allyl, and benzyl halides. Additionally, both chiral 2,2- and 2,4-disubstituted oxetan-3-ones can be made in high ee (86–90%) by repetition of this lithiation/alkylation sequence under appropriately controlled conditions. Hydrolysis of the resultant hydrazones with aqueous oxalic acid provides the 2-substituted oxetan-3-ones without detectable racemization
7-Azabicyclo[2.2.1]heptane N-Imide as an Intermediate in the Thermal Decomposition of N-Amino-7-Azabicyclo[2.2.1]heptane and the Corresponding Benzenesulphonamide
An intermediate in the thermal decomposition of N-amino-7-azabicyclo[2.2.1]heptane and the corresponding benzenesulphonamide derivative, whose structure is consistent with the formulation 7-azabicyclo[2.2.1]heptane N-imide, affords on thermal fragmentation the hydrocarbon products hexa-1,5-diene, bicyclo[2.2.0]hexane, and cyclohexene and does not rearrange to the corresponding stable 2,3-diazabicyclo[2.2.2]oct-2-ene isomer
Isomerization Mechanism in Hydrazone-Based Rotary Switches: Lateral Shift, Rotation, or Tautomerization?
Two intramolecularly hydrogen-bonded arylhydrazone (aryl = phenyl or naphthyl) molecular switches have been synthesized, and their full and reversible switching between the E and Z configurations have been demonstrated. These chemically controlled configurational rotary switches exist primarily as the E isomer at equilibrium and can be switched to the protonated Z configuration (Z-H^+) by the addition of trifluoroacetic acid. The protonation of the pyridine moiety in the switch induces a rotation around the hydrazone C═N double bond, leading to isomerization. Treating Z-H^+ with base (K_(2)CO_3) yields a mixture of E and “metastable” Z isomers. The latter thermally equilibrates to reinstate the initial isomer ratio. The rate of the Z → E isomerization process showed small changes as a function of solvent polarity, indicating that the isomerization might be going through the inversion mechanism (nonpolar transition state). However, the plot of the logarithm of the rate constant k vs the Dimroth parameter (E_T) gave a linear fit, demonstrating the involvement of a polar transition state (rotation mechanism). These two seemingly contradicting kinetic data were not enough to determine whether the isomerization mechanism goes through the rotation or inversion pathways. The highly negative entropy values obtained for both the forward (E → Z-H^+) and backward (Z → E) processes strongly suggest that the isomerization involves a polarized transition state that is highly organized (possibly involving a high degree of solvent organization), and hence it proceeds via a rotation mechanism as opposed to inversion. Computations of the Z ↔ E isomerization using density functional theory (DFT) at the M06/cc-pVTZ level and natural bond orbital (NBO) wave function analyses have shown that the favorable isomerization mechanism in these hydrogen-bonded systems is hydrazone–azo tautomerization followed by rotation around a C–N single bond, as opposed to the more common rotation mechanism around the C═N double bond
Room-Temperature Alternative to the Arbuzov Reaction: The Reductive Deoxygenation of Acyl Phosphonates
The reductive deoxygenation of acyl phosphonates using a Wolff−Kishner-like sequence is described. This transformation allows direct access to alkyl phosphonates from acyl phosphonates at room temperature. The method can be combined with acyl phosphonate synthesis into a one pot, four-step procedure for the conversion of carboxylic acids into alkyl phosphonates. The methodology works well for a variety of aliphatic acids and shows a functional group tolerance similar to that of other hydrazone-forming reactions
End-to-end thiocyanato-bridged helical chain polymer and dichlorido-bridged copper(II) complexes with a hydrazone ligand: synthesis, characterisation by electron paramagnetic resonance and variable- temperature magnetic studies, and inhibitory effects on human colorectal carcinoma cells
The reactions of the tridentate hydrazone ligand, N’-[1-(pyridin-2-yl)ethylidene]acetohydrazide (HL), obtained by condensation of 2-acetylpyridine with acetic hyadrazide, with copper nitrate trihydrate in the presence of thiocyanate, or with CuCl2 produce two distinct coordination compounds, namely a one-dimensional
helical coordination chain of [CuL(NCS)]n (1) units, and a doubly chlorido-bridged dinuclear complex [Cu2L2Cl2] (2)
(where L=CH3C(O)=N − N=CCH3C5H4N). Single-crystal X-ray structural determination studies reveal that in complex 1, a deprotonated hydrazone ligand L- coordinates a copper(II) ion that is bridged to two neighbouring metal centres by SCN- anions, generating a one-dimensional helical coordination chain. In complex 2, two symmetry-related, adjacent copper(II) coordination entities are doubly chlorido-bridged, producing a dicopper entity with a Cu···Cu distance of 3.402 (1). The two coordination compounds have been fully characterised by elemental analysis, spectroscopic techniques including IR, UV– vis and electron paramagnetic resonance, and variable-temperature magnetic studies. The biological effects of 1 and 2 on the viability of human colorectal carcinoma cells (COLO-205
and HT-29) were evaluated using an MTT assay, and the results indicate that these complexes induce a decrease in cell-population growth of human colorectal carcinoma cells with apoptosis
Salicylaldehyde hydrazones: buttressing of outer sphere hydrogen-bonding and copper-extraction properties
Salicylaldehyde hydrazones are weaker copper extractants than their oxime derivatives, which are used in hydrometallurgical processes to recover ~20 % of the world’s copper. Their strength, based on the extraction equilibrium constant Ke, can be increased by nearly three orders of magnitude by incorporating electron-withdrawing or hydrogen-bond acceptor groups (X) ortho to the phenolic OH group of the salicylaldehyde unit. Density functional theory calculations suggest that the effects of the 3-X substituents arise from a combination of their influence on the acidity of the phenol in the pH-dependent equilibrium, Cu2+ + 2Lorg ⇌ [Cu(L–H)2]org + 2H+, and on their ability to ‘buttress’ interligand hydrogen bonding by interacting with the hydrazone N–H donor group. X-ray crystal structure determination and computed structures indicate that in both the solid state and the gas phase, coordinated hydrazone groups are less planar than coordinated oximes and this has an adverse effect on intramolecular hydrogen-bond formation to the neighbouring phenolate oxygen atoms
- …
