2 research outputs found

    Hybrid Radio-map for Noise Tolerant Wireless Indoor Localization

    Full text link
    In wireless networks, radio-map based locating techniques are commonly used to cope the complex fading feature of radio signal, in which a radio-map is built by calibrating received signal strength (RSS) signatures at training locations in the offline phase. However, in severe hostile environments, such as in ship cabins where severe shadowing, blocking and multi-path fading effects are posed by ubiquitous metallic architecture, even radio-map cannot capture the dynamics of RSS. In this paper, we introduced multiple feature radio-map location method for severely noisy environments. We proposed to add low variance signature into radio map. Since the low variance signatures are generally expensive to obtain, we focus on the scenario when the low variance signatures are sparse. We studied efficient construction of multi-feature radio-map in offline phase, and proposed feasible region narrowing down and particle based algorithm for online tracking. Simulation results show the remarkably performance improvement in terms of positioning accuracy and robustness against RSS noises than the traditional radio-map method.Comment: 6 pages, 11th IEEE International Conference on Networking, Sensing and Control, April 7-9, 2014, Miami, FL, US

    Comparison of Methods for Radio Position of Non-Emitting Dismounts

    Get PDF
    Radio Tomographic Imaging (RTI) is a form of Device Free Passive Localization (DFPL) that utilizes the Received Signal Strength (RSS) values from a collection of wireless transceivers to produce an image in order to localize a subject within a Wireless Sensor Network (WSN). Radio Mapping is another form of DFPL that can utilize the same RSS values from a WSN to localize a subject by comparing recent values to a set of calibration data. RTI and Radio Mapping have never been directly compared to one another as a means of localization within a WSN. The goal of this research is to compare using TelosB mote devices these approaches in a side-by-side manner. A real world WSN was constructed and both RTI and Radio Mapping methodologies were applied to identical data sets with the results compared and discussed. Initial results show that both methodologies have inherent advantages and disadvantages respective to one another; Radio Mapping performs significantly better in WSNs with a low number of transceivers being 100% accurate within the bounds of this experimentation, while RTI has significantly more simple calibration procedures
    corecore