800 research outputs found

    Three Dimensional Elasticity Analyses for Isotropic and Orthotropic Composite Cylinders

    Get PDF
    The demand for using shell theories comes from its efficiency in computational and analytical cost. On another side, new materials that are orthotropic and/or anisotropic in nature are discovered and broadly used in many fields. Many advanced shell theories are developed for these new materials, particularly in the recent decades. A study about the accuracy of these shell theories is very meaningful to build confidence in them for further applications. This study requires a precise benchmark against which shell theories can be tested. This is the main research subjective in this dissertation: to build a set of solutions using the three dimensional (3D) theory of elasticity against which shell theories can be tested for accuracy. The contents of this dissertation to support this research include a comprehensive literature review for the shell theories and recent usage and to find the gaps which need to be filled. These gaps include, among others, the lack of studies on the accuracy of the theories used and the absence of results using the 3D theory, particularly for orthotropic materials. Some of these studies are conducted here. The deficiency of some commercial finite element packages is discussed here. The reasons for the absence of accurate results are investigated. The 3D theory and analyses of isotropic and orthotropic materials of hollow cylinders is investigated here for reliable results

    Exact thermoelastic analysis of a thick cylindrical functionally graded material shell under unsteady heating using first order shear deformation theory

    Get PDF
    In this article, a new analytical formulation is presented for axisymmetric thick-walled FGM cylinder with power-law variation in mechanical and thermal properties under transient heating using first order shear deformation theory. Equilibrium equations are derived by virtual work principles and energy method. The unsteady heat conduction equation is solved using the method of separation of variables, generalized Bessel functions and an Eigen-function method. Validation of the analytical solutions is conducted with a finite element method (FEM). The effects of time on stress and displacement distribution are studied in detail. The numerical values used in this study are selected based on earlier studies. The influence of effect of transient heat transfer on heterogeneous thick-walled cylinder elasticity is clearly demonstrated. In particular the significant influence of time and heterogenous constant on radial displacement, hoop stress and temperature distributions is computed. The study is relevant to rocket chamber thermo-mechanics, propulsion duct thermophysical design, industrial thermal storage systems etc

    Thick-walled composite tubes for offshore applications : an example of stress and failure analysis for filament-wound multi-layered pipes

    Get PDF
    Acknowledgements Financial support of the part of this research by The Royal Society, The Royal Academy of Engineering, and The Carnegie Trust for the Universities of Scotland is gratefully acknowledged.Peer reviewedPostprin

    Study on the Mechanical Properties of Carbon Nanotube Coated‒Fiber Multi-Scale (CCFM) Hybrid Composites

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    Lightweight Vehicle Structures that Absorb and Direct Destructive Energy Away from the Occupants

    Full text link
    One of the main thrusts in current automotive industry is the development of occupant-centric vehicle structures that make the vehicle safe for the occupants. A design philosophy that improves vehicle survivability by absorbing and redirecting destructive energy in underbody blast events should be developed and demonstrated. On the other hand, the size and weight of vehicles are also paramount design factors for the purpose of providing faster transportation, great fuel conservation, higher payload, and higher mobility. Therefore, developing a light weight vehicle structure that provides a balance between survivability and mobility technologies for both vehicle and its occupants becomes a design challenge in this research. One of the new concepts of absorbing blast energy is to utilize the properties of “softer” structural materials in combination with a damping mechanism for absorbing the destructive energy through deformation. These “softer” materials are able to reduce the shock loads by absorbing energy through higher deformation than that of characteristic of normal high strength materials. A generic V-hull structure with five bulkheads developed by the TARDEC is used in the study as the baseline numerical model for investigating this concept. Another new concept is to utilize anisotropic material properties to guide and redirect the destructive energy away from the occupants along pre-designated energy paths. The dynamic performance of multilayer structures is of great interest because they act as a mechanism to absorb and spread the energy from a blast load in the lateral direction instead of permitting it to enter occupant space. A reduced-order modeling (ROM) approach is developed and applied in the preliminary design for studying the dynamic characterization of multilayer structures. The reliability of the ROM is validated by a spectral finite element analysis (SFEA) and a classic finite element analysis by using the commercial code Nastran. A design optimization framework for the multilayer plate is also developed and used to minimize the injury probability, along with a maximum structural weight reduction. Therefore, the goal of designing a lightweight vehicle structure that has high levels of protection in underbody blast events can be achieved in an efficient way.PHDNaval Architecture & Marine EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135895/1/leaduwin_1.pd

    Optimal Design of Functionally Graded Parts

    Get PDF
    Several additive manufacturing processes are capable of fabricating three-dimensional parts with complex distribution of material composition to achieve desired local properties and functions. This unique advantage could be exploited by developing and implementing methodologies capable of optimizing the distribution of material composition for one-, two-, and three-dimensional parts. This paper is the first effort to review the research works on developing these methods. The underlying components (i.e., building blocks) in all of these methods include the homogenization approach, material representation technique, finite element analysis approach, and the choice of optimization algorithm. The overall performance of each method mainly depends on these components and how they work together. For instance, if a simple one-dimensional analytical equation is used to represent the material composition distribution, the finite element analysis and optimization would be straightforward, but it does not have the versatility of a method which uses an advanced representation technique. In this paper, evolution of these methods is followed; noteworthy homogenization approaches, representation techniques, finite element analysis approaches, and optimization algorithms used/developed in these studies are described; and most powerful design methods are identified, explained, and compared against each other. Also, manufacturing techniques, capable of producing functionally graded materials with complex material distribution, are reviewed; and future research directions are discussed

    Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications

    Get PDF
    A new class of accelerating structures employing a uniformly twisted waveguide is investigated. Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown that such a twisted waveguide can support waves that travel at a speed slower than the speed of light c. The slow-wave properties of twisted structures are of interest because these slow-wave electromagnetic fields can be used in applications such as electron traveling wave tubes and linear particle accelerators. Since there is no exact closed form solution for the electromagnetic fields within a twisted waveguide or cavity, several previously proposed approximate methods are examined, and more efficient approaches are developed. It is found that the existing perturbation theory methods yield adequate results for slowly twisted structures; however, our efforts here are geared toward analyzing rapidly twisted structures using modified finite difference methods specially suited for twisted structures. Although the method can handle general twisted structures, three particular cross sections are selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is analyzed as a reference case. This is because its shape is simple and perturbation theory already gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched circular cross section is investigated, since its longitudinal cross section is comparable to the well known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a dumbbell shaped cross section is analyzed because of its similarity to the well-known TESLA-type accelerating cavity, which is of great importance because of its wide acceptance as a superconducting cavity. To validate the results of the developed theory and our extensive simulations, the newly developed numerical models are compared to commercial codes. Also, several prototypes are developed employing the three basic shapes discussed previously. Bench measurements are performed on the prototype cavities to evaluate dispersion by measuring the field distribution along these cavities. The measurement results are compared to the simulations and theoretical results, and good agreement is shown. Once validated, the developed models are used to design twisted accelerating structures with specific phase velocities and good accelerating performance

    Research and technology highlights of the Lewis Research Center

    Get PDF
    Highlights of research accomplishments of the Lewis Research Center for fiscal year 1984 are presented. The report is divided into four major sections covering aeronautics, space communications, space technology, and materials and structures. Six articles on energy are included in the space technology section

    Wave Propagation in Materials for Modern Applications

    Get PDF
    In the recent decades, there has been a growing interest in micro- and nanotechnology. The advances in nanotechnology give rise to new applications and new types of materials with unique electromagnetic and mechanical properties. This book is devoted to the modern methods in electrodynamics and acoustics, which have been developed to describe wave propagation in these modern materials and nanodevices. The book consists of original works of leading scientists in the field of wave propagation who produced new theoretical and experimental methods in the research field and obtained new and important results. The first part of the book consists of chapters with general mathematical methods and approaches to the problem of wave propagation. A special attention is attracted to the advanced numerical methods fruitfully applied in the field of wave propagation. The second part of the book is devoted to the problems of wave propagation in newly developed metamaterials, micro- and nanostructures and porous media. In this part the interested reader will find important and fundamental results on electromagnetic wave propagation in media with negative refraction index and electromagnetic imaging in devices based on the materials. The third part of the book is devoted to the problems of wave propagation in elastic and piezoelectric media. In the fourth part, the works on the problems of wave propagation in plasma are collected. The fifth, sixth and seventh parts are devoted to the problems of wave propagation in media with chemical reactions, in nonlinear and disperse media, respectively. And finally, in the eighth part of the book some experimental methods in wave propagations are considered. It is necessary to emphasize that this book is not a textbook. It is important that the results combined in it are taken “from the desks of researchers“. Therefore, I am sure that in this book the interested and actively working readers (scientists, engineers and students) will find many interesting results and new ideas
    • 

    corecore