5,519 research outputs found

    Design and Analysis of an Estimation of Distribution Approximation Algorithm for Single Machine Scheduling in Uncertain Environments

    Full text link
    In the current work we introduce a novel estimation of distribution algorithm to tackle a hard combinatorial optimization problem, namely the single-machine scheduling problem, with uncertain delivery times. The majority of the existing research coping with optimization problems in uncertain environment aims at finding a single sufficiently robust solution so that random noise and unpredictable circumstances would have the least possible detrimental effect on the quality of the solution. The measures of robustness are usually based on various kinds of empirically designed averaging techniques. In contrast to the previous work, our algorithm aims at finding a collection of robust schedules that allow for a more informative decision making. The notion of robustness is measured quantitatively in terms of the classical mathematical notion of a norm on a vector space. We provide a theoretical insight into the relationship between the properties of the probability distribution over the uncertain delivery times and the robustness quality of the schedules produced by the algorithm after a polynomial runtime in terms of approximation ratios

    Using Differential Evolution for the Graph Coloring

    Full text link
    Differential evolution was developed for reliable and versatile function optimization. It has also become interesting for other domains because of its ease to use. In this paper, we posed the question of whether differential evolution can also be used by solving of the combinatorial optimization problems, and in particular, for the graph coloring problem. Therefore, a hybrid self-adaptive differential evolution algorithm for graph coloring was proposed that is comparable with the best heuristics for graph coloring today, i.e. Tabucol of Hertz and de Werra and the hybrid evolutionary algorithm of Galinier and Hao. We have focused on the graph 3-coloring. Therefore, the evolutionary algorithm with method SAW of Eiben et al., which achieved excellent results for this kind of graphs, was also incorporated into this study. The extensive experiments show that the differential evolution could become a competitive tool for the solving of graph coloring problem in the future

    A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem

    Get PDF
    As the interest of practitioners and researchers in scheduling in a multi-factory environment is growing, there is an increasing need to provide efficient algorithms for this type of decision problems, characterised by simultaneously addressing the assignment of jobs to different factories/workshops and their subsequent scheduling. Here we address the so-called distributed permutation flowshop scheduling problem, in which a set of jobs has to be scheduled over a number of identical factories, each one with its machines arranged as a flowshop. Several heuristics have been designed for this problem, although there is no direct comparison among them. In this paper, we propose a new heuristic which exploits the specific structure of the problem. The computational experience carried out on a well-known testbed shows that the proposed heuristic outperforms existing state-of-the-art heuristics, being able to obtain better upper bounds for more than one quarter of the problems in the testbed.Ministerio de Ciencia e Innovación DPI2010-15573/DP
    • …
    corecore