16,482 research outputs found

    Active Noise Control with Sampled-Data Filtered-x Adaptive Algorithm

    Full text link
    Analysis and design of filtered-x adaptive algorithms are conventionally done by assuming that the transfer function in the secondary path is a discrete-time system. However, in real systems such as active noise control, the secondary path is a continuous-time system. Therefore, such a system should be analyzed and designed as a hybrid system including discrete- and continuous- time systems and AD/DA devices. In this article, we propose a hybrid design taking account of continuous-time behavior of the secondary path via lifting (continuous-time polyphase decomposition) technique in sampled-data control theory

    Design of a digital compression technique for shuttle television

    Get PDF
    The determination of the performance and hardware complexity of data compression algorithms applicable to color television signals, were studied to assess the feasibility of digital compression techniques for shuttle communications applications. For return link communications, it is shown that a nonadaptive two dimensional DPCM technique compresses the bandwidth of field-sequential color TV to about 13 MBPS and requires less than 60 watts of secondary power. For forward link communications, a facsimile coding technique is recommended which provides high resolution slow scan television on a 144 KBPS channel. The onboard decoder requires about 19 watts of secondary power

    On a Hybrid Preamble/Soft-Output Demapper Approach for Time Synchronization for IEEE 802.15.6 Narrowband WBAN

    Full text link
    In this paper, we present a maximum likelihood (ML) based time synchronization algorithm for Wireless Body Area Networks (WBAN). The proposed technique takes advantage of soft information retrieved from the soft demapper for the time delay estimation. This algorithm has a low complexity and is adapted to the frame structure specified by the IEEE 802.15.6 standard for the narrowband systems. Simulation results have shown good performance which approach the theoretical mean square error limit bound represented by the Cramer Rao Bound (CRB)

    Blind deconvolution of medical ultrasound images: parametric inverse filtering approach

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.910179The problem of reconstruction of ultrasound images by means of blind deconvolution has long been recognized as one of the central problems in medical ultrasound imaging. In this paper, this problem is addressed via proposing a blind deconvolution method which is innovative in several ways. In particular, the method is based on parametric inverse filtering, whose parameters are optimized using two-stage processing. At the first stage, some partial information on the point spread function is recovered. Subsequently, this information is used to explicitly constrain the spectral shape of the inverse filter. From this perspective, the proposed methodology can be viewed as a ldquohybridizationrdquo of two standard strategies in blind deconvolution, which are based on either concurrent or successive estimation of the point spread function and the image of interest. Moreover, evidence is provided that the ldquohybridrdquo approach can outperform the standard ones in a number of important practical cases. Additionally, the present study introduces a different approach to parameterizing the inverse filter. Specifically, we propose to model the inverse transfer function as a member of a principal shift-invariant subspace. It is shown that such a parameterization results in considerably more stable reconstructions as compared to standard parameterization methods. Finally, it is shown how the inverse filters designed in this way can be used to deconvolve the images in a nonblind manner so as to further improve their quality. The usefulness and practicability of all the introduced innovations are proven in a series of both in silico and in vivo experiments. Finally, it is shown that the proposed deconvolution algorithms are capable of improving the resolution of ultrasound images by factors of 2.24 or 6.52 (as judged by the autocorrelation criterion) depending on the type of regularization method used

    State-Space Interpretation of Model Predictive Control

    Get PDF
    A model predictive control technique based on a step response model is developed using state estimation techniques. The standard step response model is extended so that integrating systems can be treated within the same framework. Based on the modified step response model, it is shown how the state estimation techniques from stochastic optimal control can be used to construct the optimal prediction vector without introducing significant additional numerical complexity. In the case of integrated or double integrated white noise disturbances filtered through general first-order dynamics and white measurement noise, the optimal filter gain is parametrized explicitly in terms of a single parameter between 0 and 1, thus removing the requirement for solving a Riccati equation and equipping the control system with useful on-line tuning parameters. Parallels are drawn to the existing MPC techniques such as Dynamic Matrix Control (DMC), Internal Model Control (IMC) and Generalized Predictive Control (GPC)
    • …
    corecore