21,923 research outputs found
3D Scanning System for Automatic High-Resolution Plant Phenotyping
Thin leaves, fine stems, self-occlusion, non-rigid and slowly changing
structures make plants difficult for three-dimensional (3D) scanning and
reconstruction -- two critical steps in automated visual phenotyping. Many
current solutions such as laser scanning, structured light, and multiview
stereo can struggle to acquire usable 3D models because of limitations in
scanning resolution and calibration accuracy. In response, we have developed a
fast, low-cost, 3D scanning platform to image plants on a rotating stage with
two tilting DSLR cameras centred on the plant. This uses new methods of camera
calibration and background removal to achieve high-accuracy 3D reconstruction.
We assessed the system's accuracy using a 3D visual hull reconstruction
algorithm applied on 2 plastic models of dicotyledonous plants, 2 sorghum
plants and 2 wheat plants across different sets of tilt angles. Scan times
ranged from 3 minutes (to capture 72 images using 2 tilt angles), to 30 minutes
(to capture 360 images using 10 tilt angles). The leaf lengths, widths, areas
and perimeters of the plastic models were measured manually and compared to
measurements from the scanning system: results were within 3-4% of each other.
The 3D reconstructions obtained with the scanning system show excellent
geometric agreement with all six plant specimens, even plants with thin leaves
and fine stems.Comment: 8 papes, DICTA 201
MScMS-II: an innovative IR-based indoor coordinate measuring system for large-scale metrology applications
According to the current great interest concerning large-scale metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance are assuming a more and more important role among system requirements. This paper describes the architecture and the working principles of a novel infrared (IR) optical-based system, designed to perform low-cost and easy indoor coordinate measurements of large-size objects. The system consists of a distributed network-based layout, whose modularity allows fitting differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load. The overall system functionalities, including distributed layout configuration, network self-calibration, 3D point localization, and measurement data elaboration, are discussed. A preliminary metrological characterization of system performance, based on experimental testing, is also presente
Depth Fields: Extending Light Field Techniques to Time-of-Flight Imaging
A variety of techniques such as light field, structured illumination, and
time-of-flight (TOF) are commonly used for depth acquisition in consumer
imaging, robotics and many other applications. Unfortunately, each technique
suffers from its individual limitations preventing robust depth sensing. In
this paper, we explore the strengths and weaknesses of combining light field
and time-of-flight imaging, particularly the feasibility of an on-chip
implementation as a single hybrid depth sensor. We refer to this combination as
depth field imaging. Depth fields combine light field advantages such as
synthetic aperture refocusing with TOF imaging advantages such as high depth
resolution and coded signal processing to resolve multipath interference. We
show applications including synthesizing virtual apertures for TOF imaging,
improved depth mapping through partial and scattering occluders, and single
frequency TOF phase unwrapping. Utilizing space, angle, and temporal coding,
depth fields can improve depth sensing in the wild and generate new insights
into the dimensions of light's plenoptic function.Comment: 9 pages, 8 figures, Accepted to 3DV 201
Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery
One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions
Micro-manufacturing : research, technology outcomes and development issues
Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing
- …
