15,307 research outputs found

    Spatial groundings for meaningful symbols

    Get PDF
    The increasing availability of ontologies raises the need to establish relationships and make inferences across heterogeneous knowledge models. The approach proposed and supported by knowledge representation standards consists in establishing formal symbolic descriptions of a conceptualisation, which, it has been argued, lack grounding and are not expressive enough to allow to identify relations across separate ontologies. Ontology mapping approaches address this issue by exploiting structural or linguistic similarities between symbolic entities, which is costly, error-prone, and in most cases lack cognitive soundness. We argue that knowledge representation paradigms should have a better support for similarity and propose two distinct approaches to achieve it. We first present a representational approach which allows to ground symbolic ontologies by using Conceptual Spaces (CS), allowing for automated computation of similarities between instances across ontologies. An alternative approach is presented, which considers symbolic entities as contextual interpretations of processes in spacetime or Differences. By becoming a process of interpretation, symbols acquire the same status as other processes in the world and can be described (tagged) as well, which allows the bottom-up production of meaning

    Mixed Tree and Spatial Representation of Dissimilarity Judgments

    Get PDF
    Whereas previous research has shown that either tree or spatial representations of dissimilarity judgments may be appropriate, focussing on the comparative fit at the aggregate level, we investigate whether there is heterogeneity among subjects in the extent to which their dissimilarity judgments are better represented by ultrametric tree or spatial multidimensional scaling models. We develop a mixture model for the analysis of dissimilarity data, that is formulated in a stochastic context, and entails a representation and a measurement model component. The latter involves distributional assumptions on the measurement error, and enables estimation by maximum likelihood. The representation component allows dissimilarity judgments to be represented either by a tree structure or by a spatial configuration, or a mixture of both. In order to investigate the appropriateness of tree versus spatial representations, the model is applied to twenty empirical data sets. We compare the fit of our model with that of aggregate tree and spatial models, as well as with mixtures of pure trees and mixtures of pure spaces, respectively. We formulate some empirical generalizations on the relative importance of tree versus spatial structures in representing dissimilarity judgments at the individual level.Multidimensional scaling;tree models;mixture models;dissimilarity judgments

    Bounded Rationality and Heuristics in Humans and in Artificial Cognitive Systems

    Get PDF
    In this paper I will present an analysis of the impact that the notion of “bounded rationality”, introduced by Herbert Simon in his book “Administrative Behavior”, produced in the field of Artificial Intelligence (AI). In particular, by focusing on the field of Automated Decision Making (ADM), I will show how the introduction of the cognitive dimension into the study of choice of a rational (natural) agent, indirectly determined - in the AI field - the development of a line of research aiming at the realisation of artificial systems whose decisions are based on the adoption of powerful shortcut strategies (known as heuristics) based on “satisficing” - i.e. non optimal - solutions to problem solving. I will show how the “heuristic approach” to problem solving allowed, in AI, to face problems of combinatorial complexity in real-life situations and still represents an important strategy for the design and implementation of intelligent systems

    Extending ontological categorization through a dual process conceptual architecture

    Get PDF
    In this work we present a hybrid knowledge representation system aiming at extending the representational and reasoning capabilities of classical ontologies by taking into account the theories of typicality in conceptual processing. The system adopts a categorization process inspired to the dual process theories and, from a representational perspective, is equipped with a heterogeneous knowledge base that couples conceptual spaces and ontological formalisms. The system has been experimentally assessed in a conceptual categorization task where common sense linguistic descriptions were given in input, and the corresponding target concepts had to be identified. The results show that the proposed solution substantially improves the representational and reasoning \ue2\u80\u9cconceptual\ue2\u80\u9d capabilities of standard ontology-based systems

    A Boxology of Design Patterns for Hybrid Learning and Reasoning Systems

    Full text link
    We propose a set of compositional design patterns to describe a large variety of systems that combine statistical techniques from machine learning with symbolic techniques from knowledge representation. As in other areas of computer science (knowledge engineering, software engineering, ontology engineering, process mining and others), such design patterns help to systematize the literature, clarify which combinations of techniques serve which purposes, and encourage re-use of software components. We have validated our set of compositional design patterns against a large body of recent literature.Comment: 12 pages,55 reference

    Unlocking medical leadership’s potential:a multilevel virtuous circle?

    Get PDF
    Background and aim: Medical leadership (ML) has been introduced in many countries, promising to support healthcare services improvement and help further system reform through effective leadership behaviours. Despite some evidence of its success, such lofty promises remain unfulfilled. Method: Couched in extant international literature, this paper provides a conceptual framework to analyse ML's potential in the context of healthcare's complex, multifaceted setting. Results: We identify four interrelated levels of analysis, or domains, that influence ML's potential to transform healthcare delivery. These are the healthcare ecosystem domain, the professional domain, the organisational domain and the individual doctor domain. We discuss the tensions between the various actors working in and across these domains and argue that greater multilevel and multistakeholder collaborative working in healthcare is necessary to reprofessionalise and transform healthcare ecosystems
    • 

    corecore