16,822 research outputs found
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and later on solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. A remaining issue is the cost of hybrids vs the existing launch propulsion systems. This paper will review the known state of the art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. One remaining issue is the cost of hybrids versus the existing launch propulsion systems. This paper will review the known state-of-the-art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost
Hybrid Rocket Engine Ignition and Control
Control of a hybrid rocket engine is dependent upon a robust system capable of executing commands at precise times. In order to accomplish this, hardware systems must be in place to control the flow of a pressurized gas and provide feedback to launch site personnel. Through the use of solenoid valves and wireless transceivers, control over the thrust of a rocket can be accomplished. In order to understand this information and provide a user-friendly interface to complete this, a launch control module is used. Through the combined capabilities of the two system it becomes possible to test and launch a hybrid engine rocket in a safe and efficient manner
Design and trade-offs of a pole-sitter mission
This paper provides a mission analysis and systems design of a pole-sitter mission, i.e. a spacecraft that is continuously above an Earth Pole, and can provide real-time, continuous and hemispherical coverage of the polar regions. Two different propulsion strategies are proposed: solar electric propulsion (SEP) and SEP hybridized with a solar sail. For both, minimum-propellant pole-sitter orbits and transfers are designed, assuming Soyuz and Ariane 5 launch options. A mass budget analysis allows for a tradeoff between mission lifetime and payload mass capacity (up to 7 years for 100 kg), and candidate payloads for a range of applications are investigated
Effect of tangential swirl air inlet angle on the combustion efficiency of a hybrid powder-solid ramjet
A new ramjet configuration using powder and solid fuel as propellant is investigated, namely, hybrid powder-solid ramjet (HPSR). Boron particles were used as the powder in this study. In order to improve combustion efficiency of boron and simplify the engine structure, a tangential swirl air inlet is adopted on the HPSR. Ignition model based on the multi-layer oxide structure and Global reaction combustion model of boron particles, the Lagrangian particle trajectory model and the realizable k-ε turbulence model were implemented to calculate three-dimensional two-phase flow and combustion in the HPSR with the different tangential air inlet angles (0°,5°, 10°, 15°, 20°, 25°). The effects of tangential air inlet angles on the ignition and combustion of boron were analyzed. The results show that when the tangential swirl air inlet angle is 10°, the combustion efficiency of boron particles and the total combustion efficiency of engine are the highest; the temperature distribution in the second combustion chamber is uniform, and the ignition distance of particles is small, for the HPSR configuration tested
Design issues for lunar in situ aluminum/oxygen propellant rocket engines
Design issues for lunar ascent and lunar descent rocket engines fueled by aluminum/oxygen propellant produced in situ at the lunar surface were evaluated. Key issues are discussed which impact the design of these rockets: aluminum combustion, throat erosion, and thrust chamber cooling. Four engine concepts are presented, and the impact of combustion performance, throat erosion and thrust chamber cooling on overall engine design are discussed. The advantages and disadvantages of each engine concept are presented
Hybrid fuzzy sliding mode control for motorised space tether spin-up when coupled with axial and torsional oscillation
A specialised hybrid controller is applied to the control of a motorised space tether spin-up space coupled with an axial and a torsional oscillation phenomenon. A seven-degree-of-freedom (7-DOF) dynamic model of a motorised momentum exchange tether is used as the basis for interplanetary payload exchange in the context of control. The tether comprises a symmetrical double payload configuration, with an outrigger counter inertia and massive central facility. It is shown that including axial and torsional elasticity permits an enhanced level of performance prediction accuracy and a useful departure from the usual rigid body representations, particularly for accurate payload positioning at strategic points. A simulation with given initial condition data has been devised in a connecting programme between control code written in MATLAB and dynamics simulation code constructed within MATHEMATICA. It is shown that there is an enhanced level of spin-up control for the 7-DOF motorised momentum exchange tether system using the specialised hybrid controller.
hybrid controller
- …
