3,912 research outputs found

    Time-Efficient Hybrid Approach for Facial Expression Recognition

    Get PDF
    Facial expression recognition is an emerging research area for improving human and computer interaction. This research plays a significant role in the field of social communication, commercial enterprise, law enforcement, and other computer interactions. In this paper, we propose a time-efficient hybrid design for facial expression recognition, combining image pre-processing steps and different Convolutional Neural Network (CNN) structures providing better accuracy and greatly improved training time. We are predicting seven basic emotions of human faces: sadness, happiness, disgust, anger, fear, surprise and neutral. The model performs well regarding challenging facial expression recognition where the emotion expressed could be one of several due to their quite similar facial characteristics such as anger, disgust, and sadness. The experiment to test the model was conducted across multiple databases and different facial orientations, and to the best of our knowledge, the model provided an accuracy of about 89.58% for KDEF dataset, 100% accuracy for JAFFE dataset and 71.975% accuracy for combined (KDEF + JAFFE + SFEW) dataset across these different scenarios. Performance evaluation was done by cross-validation techniques to avoid bias towards a specific set of images from a database

    Face Recognition using Segmental Euclidean Distance

    Get PDF
    In this paper an attempt has been made to detect the face using the combination of integral image along with the cascade structured classifier which is built using Adaboost learning algorithm. The detected faces are then passed through a filtering process for discarding the non face regions. They are individually split up into five segments consisting of forehead, eyes, nose, mouth and chin. Each segment is considered as a separate image and Eigenface also called principal component analysis (PCA) features of each segment is computed. The faces having a slight pose are also aligned for proper segmentation. The test image is also segmented similarly and its PCA features are found. The segmental Euclidean distance classifier is used for matching the test image with the stored one. The success rate comes out to be 88 per cent on the CG(full) database created from the databases of California Institute and Georgia Institute. However the performance of this approach on ORL(full) database with the same features is only 70 per cent. For the sake of comparison, DCT(full) and fuzzy features are tried on CG and ORL databases but using a well known classifier, support vector machine (SVM). Results of recognition rate with DCT features on SVM classifier are increased by 3 per cent over those due to PCA features and Euclidean distance classifier on the CG database. The results of recognition are improved to 96 per cent with fuzzy features on ORL database with SVM.Defence Science Journal, 2011, 61(5), pp.431-442, DOI:http://dx.doi.org/10.14429/dsj.61.117

    DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

    Get PDF
    In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7% mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.Comment: Accepted by TPAM

    Compact convolutional neural network cascadefor face detection

    Get PDF
    This paper presents a new solution to the frontal face detection problem based on a compact convolutional neural networks cascade. Test results on an FDDB dataset show that it is able to compete with state-of-the-art algorithms. This proposed detector is implemented using three technologies: SSE/AVX/AVX2 instruction sets for Intel CPUs, Nvidia CUDA, and OpenCL. The detection speed of our approach exceeds considerably all the existing CPUbased and GPU-based algorithms. Thanks to its high computational efficiency, our detector can process 4K Ultra HD video stream in real time (up to 27 fps) on mobile platforms while searching objects with a dimension of 60×60 pixels or higher. At the same time, its processing speed is almost independent of the background and the number of objects in a scene. This is achieved by asynchronous computation of stages in the cascade

    RUR53: an Unmanned Ground Vehicle for Navigation, Recognition and Manipulation

    Full text link
    This paper proposes RUR53: an Unmanned Ground Vehicle able to autonomously navigate through, identify, and reach areas of interest; and there recognize, localize, and manipulate work tools to perform complex manipulation tasks. The proposed contribution includes a modular software architecture where each module solves specific sub-tasks and that can be easily enlarged to satisfy new requirements. Included indoor and outdoor tests demonstrate the capability of the proposed system to autonomously detect a target object (a panel) and precisely dock in front of it while avoiding obstacles. They show it can autonomously recognize and manipulate target work tools (i.e., wrenches and valve stems) to accomplish complex tasks (i.e., use a wrench to rotate a valve stem). A specific case study is described where the proposed modular architecture lets easy switch to a semi-teleoperated mode. The paper exhaustively describes description of both the hardware and software setup of RUR53, its performance when tests at the 2017 Mohamed Bin Zayed International Robotics Challenge, and the lessons we learned when participating at this competition, where we ranked third in the Gran Challenge in collaboration with the Czech Technical University in Prague, the University of Pennsylvania, and the University of Lincoln (UK).Comment: This article has been accepted for publication in Advanced Robotics, published by Taylor & Franci
    corecore