204,362 research outputs found
A reconfigurable hybrid intelligent system for robot navigation
Soft computing has come of age to o er us a wide array of powerful and e cient algorithms
that independently matured and in
uenced our approach to solving problems in robotics,
search and optimisation. The steady progress of technology, however, induced a
ux of new
real-world applications that demand for more robust and adaptive computational paradigms,
tailored speci cally for the problem domain. This gave rise to hybrid intelligent systems, and
to name a few of the successful ones, we have the integration of fuzzy logic, genetic algorithms
and neural networks. As noted in the literature, they are signi cantly more powerful than
individual algorithms, and therefore have been the subject of research activities in the past
decades. There are problems, however, that have not succumbed to traditional hybridisation
approaches, pushing the limits of current intelligent systems design, questioning their solutions
of a guarantee of optimality, real-time execution and self-calibration. This work presents an
improved hybrid solution to the problem of integrated dynamic target pursuit and obstacle
avoidance, comprising of a cascade of fuzzy logic systems, genetic algorithm, the A* search
algorithm and the Voronoi diagram generation algorithm
A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring
The Artificial Bee Colony (ABC) is the name of an optimization algorithm that
was inspired by the intelligent behavior of a honey bee swarm. It is widely
recognized as a quick, reliable, and efficient methods for solving optimization
problems. This paper proposes a hybrid ABC (HABC) algorithm for graph
3-coloring, which is a well-known discrete optimization problem. The results of
HABC are compared with results of the well-known graph coloring algorithms of
today, i.e. the Tabucol and Hybrid Evolutionary algorithm (HEA) and results of
the traditional evolutionary algorithm with SAW method (EA-SAW). Extensive
experimentations has shown that the HABC matched the competitive results of the
best graph coloring algorithms, and did better than the traditional heuristics
EA-SAW when solving equi-partite, flat, and random generated medium-sized
graphs
The opportunities of two-phase hybrid stepping motor back EMF sampling
By counting the step command pulses, stepping motors can be straightforwardly used for open loop positioning. However, open-loop control is often insufficient to guarantee accurate and energy efficient movements. More intelligent stepping motor algorithms can meet these concerns, however, this requires position information. The back EMF signal contains useful information on the rotor position. This information can be used to monitor the motor condition and to implement a more advanced position control algorithm. A theoretical analysis gives insight into the back EMF generated in a two-phase hybrid stepping motor. In this paper a, by the authors, patented sampling method is considered to measure the back EMF signal. The opportunities of this method are considered theoretically. Moreover this paper presents extensive measurement results proving the opportunities of the method, to develop more intelligent stepping motor algorithms
Exhaustive Search-based Model for Hybrid Sensor Network
A new model for a cluster of hybrid sensors network with multi sub-clusters
is proposed. The model is in particular relevant to the early warning system in
a large scale monitoring system in, for example, a nuclear power plant. It
mainly addresses to a safety critical system which requires real-time processes
with high accuracy. The mathematical model is based on the extended
conventional search algorithm with certain interactions among the nearest
neighborhood of sensors. It is argued that the model could realize a highly
accurate decision support system with less number of parameters. A case of one
dimensional interaction function is discussed, and a simple algorithm for the
model is also given.Comment: 6 pages, Proceeding of the International Conference on Intelligent &
Advanced Systems 2012 pp. 557-56
Mining and visualizing uncertain data objects and named data networking traffics by fuzzy self-organizing map
Uncertainty is widely spread in real-world data. Uncertain data-in computer science-is typically found in the area of sensor networks where the sensors sense the environment with certain error. Mining and visualizing uncertain data is one of the new challenges that face uncertain databases. This paper presents a new intelligent hybrid algorithm that applies fuzzy set theory into the context of the Self-Organizing Map to mine and visualize uncertain objects. The algorithm is tested in some benchmark problems and the uncertain traffics in Named Data Networking (NDN). Experimental results indicate that the proposed algorithm is precise and effective in terms of the applied performance criteria.Peer ReviewedPostprint (published version
AI and OR in management of operations: history and trends
The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested
- …
