1,475 research outputs found

    A family of droids -- Android malware detection via behavioral modeling: static vs dynamic analysis

    Full text link
    Following the increasing popularity of mobile ecosystems, cybercriminals have increasingly targeted them, designing and distributing malicious apps that steal information or cause harm to the device's owner. Aiming to counter them, detection techniques based on either static or dynamic analysis that model Android malware, have been proposed. While the pros and cons of these analysis techniques are known, they are usually compared in the context of their limitations e.g., static analysis is not able to capture runtime behaviors, full code coverage is usually not achieved during dynamic analysis, etc. Whereas, in this paper, we analyze the performance of static and dynamic analysis methods in the detection of Android malware and attempt to compare them in terms of their detection performance, using the same modeling approach. To this end, we build on MaMaDroid, a state-of-the-art detection system that relies on static analysis to create a behavioral model from the sequences of abstracted API calls. Then, aiming to apply the same technique in a dynamic analysis setting, we modify CHIMP, a platform recently proposed to crowdsource human inputs for app testing, in order to extract API calls' sequences from the traces produced while executing the app on a CHIMP virtual device. We call this system AuntieDroid and instantiate it by using both automated (Monkey) and user-generated inputs. We find that combining both static and dynamic analysis yields the best performance, with F-measure reaching 0.92. We also show that static analysis is at least as effective as dynamic analysis, depending on how apps are stimulated during execution, and, finally, investigate the reasons for inconsistent misclassifications across methods.Accepted manuscrip

    Longitudinal performance analysis of machine learning based Android malware detectors

    Get PDF
    This paper presents a longitudinal study of the performance of machine learning classifiers for Android malware detection. The study is undertaken using features extracted from Android applications first seen between 2012 and 2016. The aim is to investigate the extent of performance decay over time for various machine learning classifiers trained with static features extracted from date-labelled benign and malware application sets. Using date-labelled apps allows for true mimicking of zero-day testing, thus providing a more realistic view of performance than the conventional methods of evaluation that do not take date of appearance into account. In this study, all the investigated machine learning classifiers showed progressive diminishing performance when tested on sets of samples from a later time period. Overall, it was found that false positive rate (misclassifying benign samples as malicious) increased more substantially compared to the fall in True Positive rate (correct classification of malicious apps) when older models were tested on newer app samples

    Analysis and evaluation of SafeDroid v2.0, a framework for detecting malicious Android applications

    Get PDF
    Android smartphones have become a vital component of the daily routine of millions of people, running a plethora of applications available in the official and alternative marketplaces. Although there are many security mechanisms to scan and filter malicious applications, malware is still able to reach the devices of many end-users. In this paper, we introduce the SafeDroid v2.0 framework, that is a flexible, robust, and versatile open-source solution for statically analysing Android applications, based on machine learning techniques. The main goal of our work, besides the automated production of fully sufficient prediction and classification models in terms of maximum accuracy scores and minimum negative errors, is to offer an out-of-the-box framework that can be employed by the Android security researchers to efficiently experiment to find effective solutions: the SafeDroid v2.0 framework makes it possible to test many different combinations of machine learning classifiers, with a high degree of freedom and flexibility in the choice of features to consider, such as dataset balance and dataset selection. The framework also provides a server, for generating experiment reports, and an Android application, for the verification of the produced models in real-life scenarios. An extensive campaign of experiments is also presented to show how it is possible to efficiently find competitive solutions: the results of our experiments confirm that SafeDroid v2.0 can reach very good performances, even with highly unbalanced dataset inputs and always with a very limited overhead
    • …
    corecore