437 research outputs found

    Cooperative Secure Transmission by Exploiting Social Ties in Random Networks

    Full text link
    Social awareness and social ties are becoming increasingly popular with emerging mobile and handheld devices. Social trust degree describing the strength of the social ties has drawn lots of research interests in many fields in wireless communications, such as resource sharing, cooperative communication and so on. In this paper, we propose a hybrid cooperative beamforming and jamming scheme to secure communication based on the social trust degree under a stochastic geometry framework. The friendly nodes are categorized into relays and jammers according to their locations and social trust degrees with the source node. We aim to analyze the involved connection outage probability (COP) and secrecy outage probability (SOP) of the performance in the networks. To achieve this target, we propose a double Gamma ratio (DGR) approach through Gamma approximation. Based on this, the COP and SOP are tractably obtained in closed-form. We further consider the SOP in the presence of Poisson Point Process (PPP) distributed eavesdroppers and derive an upper bound. The simulation results verify our theoretical findings, and validate that the social trust degree has dramatic influences on the security performance in the networks.Comment: 30 pages, 11 figures, to be published in IEEE Transactions on Communication

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure
    corecore