3 research outputs found

    Green Hybrid Satellite Terrestrial Networks: Fundamental Trade-Off Analysis

    Get PDF
    With the worldwide evolution of 4G generation and revolution in the information and communications technology(ICT) field to meet the exponential increase of mobile data traffic in the 2020 era, the hybrid satellite and terrestrial network based on the soft defined features is proposed from a perspective of 5G. In this paper, an end-to-end architecture of hybrid satellite and terrestrial network under the control and user Plane (C/U) split concept is studied and the performances are analysed based on stochastic geometry. The relationship between spectral efficiency (SE) and energy efficiency (EE) is investigated, taking consideration of overhead costs, transmission and circuit power, backhaul of gateway (GW), and density of small cells. Numerical results show that, by optimizing the key parameters, the hybrid satellite and terrestrial network can achieve nearly 90% EE gain with only 3% SE loss in relative dense networks, and achieve both higher EE and SE gain (20% and 5% respectively) in sparse networks toward the future 5G green communication networks

    Hybrid Cognitive Satellite Terrestrial Coverage: A case study for 5G deployment strategies

    Get PDF
    The explosion of mobile applications, wireless data traffic and their increasing integration in many aspects of everyday life has raised the need of deploying mobile networks that can support exponentially increasing wireless data traffic. In this paper, we present a Hybrid Satellite Terrestrial network, which achieves higher data rate and lower power consumption in comparison with the current LTE and LTE-Advanced cellular architectures. Furthermore, we present a feasibility study of the proposed architecture, in terms of its compliance with the technical specifications in the current standards

    Hybrid Cognitive Satellite Terrestrial Coverage: A case study for 5G deployment strategies

    No full text
    The explosion of mobile applications, wireless data traffic and their increasing integration in many aspects of everyday life has raised the need of deploying mobile networks that can support exponentially increasing wireless data traffic. In this paper, we present a Hybrid Satellite Terrestrial network, which achieves higher data rate and lower power consumption in comparison with the current LTE and LTE-Advanced cellular architectures. Furthermore, we present a feasibility study of the proposed architecture, in terms of its compliance with the technical specifications in the current standards
    corecore