23 research outputs found

    Extreme Encoder Output Frame Rate Reduction: Improving Computational Latencies of Large End-to-End Models

    Full text link
    The accuracy of end-to-end (E2E) automatic speech recognition (ASR) models continues to improve as they are scaled to larger sizes, with some now reaching billions of parameters. Widespread deployment and adoption of these models, however, requires computationally efficient strategies for decoding. In the present work, we study one such strategy: applying multiple frame reduction layers in the encoder to compress encoder outputs into a small number of output frames. While similar techniques have been investigated in previous work, we achieve dramatically more reduction than has previously been demonstrated through the use of multiple funnel reduction layers. Through ablations, we study the impact of various architectural choices in the encoder to identify the most effective strategies. We demonstrate that we can generate one encoder output frame for every 2.56 sec of input speech, without significantly affecting word error rate on a large-scale voice search task, while improving encoder and decoder latencies by 48% and 92% respectively, relative to a strong but computationally expensive baseline.Comment: Accepted to 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2024

    On the Relation between Internal Language Model and Sequence Discriminative Training for Neural Transducers

    Full text link
    Internal language model (ILM) subtraction has been widely applied to improve the performance of the RNN-Transducer with external language model (LM) fusion for speech recognition. In this work, we show that sequence discriminative training has a strong correlation with ILM subtraction from both theoretical and empirical points of view. Theoretically, we derive that the global optimum of maximum mutual information (MMI) training shares a similar formula as ILM subtraction. Empirically, we show that ILM subtraction and sequence discriminative training achieve similar performance across a wide range of experiments on Librispeech, including both MMI and minimum Bayes risk (MBR) criteria, as well as neural transducers and LMs of both full and limited context. The benefit of ILM subtraction also becomes much smaller after sequence discriminative training. We also provide an in-depth study to show that sequence discriminative training has a minimal effect on the commonly used zero-encoder ILM estimation, but a joint effect on both encoder and prediction + joint network for posterior probability reshaping including both ILM and blank suppression.Comment: submitted to ICASSP 202

    A Comparison of Semi-Supervised Learning Techniques for Streaming ASR at Scale

    Full text link
    Unpaired text and audio injection have emerged as dominant methods for improving ASR performance in the absence of a large labeled corpus. However, little guidance exists on deploying these methods to improve production ASR systems that are trained on very large supervised corpora and with realistic requirements like a constrained model size and CPU budget, streaming capability, and a rich lattice for rescoring and for downstream NLU tasks. In this work, we compare three state-of-the-art semi-supervised methods encompassing both unpaired text and audio as well as several of their combinations in a controlled setting using joint training. We find that in our setting these methods offer many improvements beyond raw WER, including substantial gains in tail-word WER, decoder computation during inference, and lattice density

    Hybrid Attention-based Encoder-decoder Model for Efficient Language Model Adaptation

    Full text link
    Attention-based encoder-decoder (AED) speech recognition model has been widely successful in recent years. However, the joint optimization of acoustic model and language model in end-to-end manner has created challenges for text adaptation. In particular, effectively, quickly and inexpensively adapting text has become a primary concern for deploying AED systems in industry. To address this issue, we propose a novel model, the hybrid attention-based encoder-decoder (HAED) speech recognition model that preserves the modularity of conventional hybrid automatic speech recognition systems. Our HAED model separates the acoustic and language models, allowing for the use of conventional text-based language model adaptation techniques. We demonstrate that the proposed HAED model yields 21\% Word Error Rate (WER) improvements in relative when out-of-domain text data is used for language model adaptation, and with only a minor degradation in WER on a general test set compared with conventional AED model

    Large-scale Language Model Rescoring on Long-form Data

    Full text link
    In this work, we study the impact of Large-scale Language Models (LLM) on Automated Speech Recognition (ASR) of YouTube videos, which we use as a source for long-form ASR. We demonstrate up to 8\% relative reduction in Word Error Eate (WER) on US English (en-us) and code-switched Indian English (en-in) long-form ASR test sets and a reduction of up to 30\% relative on Salient Term Error Rate (STER) over a strong first-pass baseline that uses a maximum-entropy based language model. Improved lattice processing that results in a lattice with a proper (non-tree) digraph topology and carrying context from the 1-best hypothesis of the previous segment(s) results in significant wins in rescoring with LLMs. We also find that the gains in performance from the combination of LLMs trained on vast quantities of available data (such as C4) and conventional neural LMs is additive and significantly outperforms a strong first-pass baseline with a maximum entropy LM. Copyright 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Comment: 5 pages, accepted in ICASSP 202

    Modular Domain Adaptation for Conformer-Based Streaming ASR

    Full text link
    Speech data from different domains has distinct acoustic and linguistic characteristics. It is common to train a single multidomain model such as a Conformer transducer for speech recognition on a mixture of data from all domains. However, changing data in one domain or adding a new domain would require the multidomain model to be retrained. To this end, we propose a framework called modular domain adaptation (MDA) that enables a single model to process multidomain data while keeping all parameters domain-specific, i.e., each parameter is only trained by data from one domain. On a streaming Conformer transducer trained only on video caption data, experimental results show that an MDA-based model can reach similar performance as the multidomain model on other domains such as voice search and dictation by adding per-domain adapters and per-domain feed-forward networks in the Conformer encoder.Comment: Accepted to Interspeech 202

    Internal Language Model Estimation Through Explicit Context Vector Learning for Attention-based Encoder-decoder ASR

    Full text link
    An end-to-end (E2E) ASR model implicitly learns a prior Internal Language Model (ILM) from the training transcripts. To fuse an external LM using Bayes posterior theory, the log likelihood produced by the ILM has to be accurately estimated and subtracted. In this paper we propose two novel approaches to estimate the ILM based on Listen-Attend-Spell (LAS) framework. The first method is to replace the context vector of the LAS decoder at every time step with a vector that is learned with training transcripts. Furthermore, we propose another method that uses a lightweight feed-forward network to directly map query vector to context vector in a dynamic sense. Since the context vectors are learned by minimizing the perplexities on training transcripts, and their estimation is independent of encoder output, hence the ILMs are accurately learned for both methods. Experiments show that the ILMs achieve the lowest perplexity, indicating the efficacy of the proposed methods. In addition, they also significantly outperform the shallow fusion method, as well as two previously proposed ILM Estimation (ILME) approaches on several datasets.Comment: Proceedings of INTERSPEEC
    corecore