39 research outputs found

    NetLSD: Hearing the Shape of a Graph

    Full text link
    Comparison among graphs is ubiquitous in graph analytics. However, it is a hard task in terms of the expressiveness of the employed similarity measure and the efficiency of its computation. Ideally, graph comparison should be invariant to the order of nodes and the sizes of compared graphs, adaptive to the scale of graph patterns, and scalable. Unfortunately, these properties have not been addressed together. Graph comparisons still rely on direct approaches, graph kernels, or representation-based methods, which are all inefficient and impractical for large graph collections. In this paper, we propose the Network Laplacian Spectral Descriptor (NetLSD): the first, to our knowledge, permutation- and size-invariant, scale-adaptive, and efficiently computable graph representation method that allows for straightforward comparisons of large graphs. NetLSD extracts a compact signature that inherits the formal properties of the Laplacian spectrum, specifically its heat or wave kernel; thus, it hears the shape of a graph. Our evaluation on a variety of real-world graphs demonstrates that it outperforms previous works in both expressiveness and efficiency.Comment: KDD '18: The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, August 19--23, 2018, London, United Kingdo

    PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures

    Full text link
    Persistence diagrams, the most common descriptors of Topological Data Analysis, encode topological properties of data and have already proved pivotal in many different applications of data science. However, since the (metric) space of persistence diagrams is not Hilbert, they end up being difficult inputs for most Machine Learning techniques. To address this concern, several vectorization methods have been put forward that embed persistence diagrams into either finite-dimensional Euclidean space or (implicit) infinite dimensional Hilbert space with kernels. In this work, we focus on persistence diagrams built on top of graphs. Relying on extended persistence theory and the so-called heat kernel signature, we show how graphs can be encoded by (extended) persistence diagrams in a provably stable way. We then propose a general and versatile framework for learning vectorizations of persistence diagrams, which encompasses most of the vectorization techniques used in the literature. We finally showcase the experimental strength of our setup by achieving competitive scores on classification tasks on real-life graph datasets
    corecore