5,597 research outputs found
Magician simulator — A realistic simulator for heterogeneous teams of autonomous robots
We report on the development of a new simulation environment for use in Multi-Robot Learning, Swarm Robotics, Robot Teaming, Human Factors and Operator Training. The simulator provides a realistic environment for examining methods for localization and navigation, sensor analysis, object identification and tracking, as well as strategy development, interface refinement and operator training (based on various degrees of heterogeneity, robot teaming, and connectivity). The simulation additionally incorporates real-time human-robot interaction and allows hybrid operation with a mix of simulated and real robots and sensor inputs
Simultaneous Feature and Body-Part Learning for Real-Time Robot Awareness of Human Behaviors
Robot awareness of human actions is an essential research problem in robotics
with many important real-world applications, including human-robot
collaboration and teaming. Over the past few years, depth sensors have become a
standard device widely used by intelligent robots for 3D perception, which can
also offer human skeletal data in 3D space. Several methods based on skeletal
data were designed to enable robot awareness of human actions with satisfactory
accuracy. However, previous methods treated all body parts and features equally
important, without the capability to identify discriminative body parts and
features. In this paper, we propose a novel simultaneous Feature And Body-part
Learning (FABL) approach that simultaneously identifies discriminative body
parts and features, and efficiently integrates all available information
together to enable real-time robot awareness of human behaviors. We formulate
FABL as a regression-like optimization problem with structured
sparsity-inducing norms to model interrelationships of body parts and features.
We also develop an optimization algorithm to solve the formulated problem,
which possesses a theoretical guarantee to find the optimal solution. To
evaluate FABL, three experiments were performed using public benchmark
datasets, including the MSR Action3D and CAD-60 datasets, as well as a Baxter
robot in practical assistive living applications. Experimental results show
that our FABL approach obtains a high recognition accuracy with a processing
speed of the order-of-magnitude of 10e4 Hz, which makes FABL a promising method
to enable real-time robot awareness of human behaviors in practical robotics
applications.Comment: 8 pages, 6 figures, accepted by ICRA'1
Human-robot cross-training: Computational formulation, modeling and evaluation of a human team training strategy
We design and evaluate human-robot cross-training, a strategy widely used and validated for effective human team training. Cross-training is an interactive planning method in which a human and a robot iteratively switch roles to learn a shared plan for a collaborative task. We first present a computational formulation of the robot's interrole knowledge and show that it is quantitatively comparable to the human mental model. Based on this encoding, we formulate human-robot cross-training and evaluate it in human subject experiments (n = 36). We compare human-robot cross-training to standard reinforcement learning techniques, and show that cross-training provides statistically significant improvements in quantitative team performance measures. Additionally, significant differences emerge in the perceived robot performance and human trust. These results support the hypothesis that effective and fluent human-robot teaming may be best achieved by modeling effective practices for human teamwork.ABB Inc.U.S. Commercial Regional CenterAlexander S. Onassis Public Benefit Foundatio
Mixed Initiative Systems for Human-Swarm Interaction: Opportunities and Challenges
Human-swarm interaction (HSI) involves a number of human factors impacting
human behaviour throughout the interaction. As the technologies used within HSI
advance, it is more tempting to increase the level of swarm autonomy within the
interaction to reduce the workload on humans. Yet, the prospective negative
effects of high levels of autonomy on human situational awareness can hinder
this process. Flexible autonomy aims at trading-off these effects by changing
the level of autonomy within the interaction when required; with
mixed-initiatives combining human preferences and automation's recommendations
to select an appropriate level of autonomy at a certain point of time. However,
the effective implementation of mixed-initiative systems raises fundamental
questions on how to combine human preferences and automation recommendations,
how to realise the selected level of autonomy, and what the future impacts on
the cognitive states of a human are. We explore open challenges that hamper the
process of developing effective flexible autonomy. We then highlight the
potential benefits of using system modelling techniques in HSI by illustrating
how they provide HSI designers with an opportunity to evaluate different
strategies for assessing the state of the mission and for adapting the level of
autonomy within the interaction to maximise mission success metrics.Comment: Author version, accepted at the 2018 IEEE Annual Systems Modelling
Conference, Canberra, Australi
- …
