67 research outputs found

    Towards the Evolution of Novel Vertical-Axis Wind Turbines

    Full text link
    Renewable and sustainable energy is one of the most important challenges currently facing mankind. Wind has made an increasing contribution to the world's energy supply mix, but still remains a long way from reaching its full potential. In this paper, we investigate the use of artificial evolution to design vertical-axis wind turbine prototypes that are physically instantiated and evaluated under approximated wind tunnel conditions. An artificial neural network is used as a surrogate model to assist learning and found to reduce the number of fabrications required to reach a higher aerodynamic efficiency, resulting in an important cost reduction. Unlike in other approaches, such as computational fluid dynamics simulations, no mathematical formulations are used and no model assumptions are made.Comment: 14 pages, 11 figure

    Repairnator patches programs automatically

    Full text link
    Repairnator is a bot. It constantly monitors software bugs discovered during continuous integration of open-source software and tries to fix them automatically. If it succeeds in synthesizing a valid patch, Repairnator proposes the patch to the human developers, disguised under a fake human identity. To date, Repairnator has been able to producepatches that were accepted by the human developers and permanently merged into the code base. This is a milestone for human-competitiveness in software engineering research on automatic program repair.Comment: arXiv admin note: substantial text overlap with arXiv:1810.0580

    The use of Genetic Programming to evolve passive filter circuits

    Get PDF
    © TAETI. This paper introduces the use of Genetic Programming (GP), Genetic Folding and symbolic circuit analysis in Matlab for the evolution of passive filter circuits. Instead of combining MATLAB and PSPICE in electronic circuit simulation, in this work, only MATLAB is used. It helps to reduce elapsed time for transferring the simulation between the two software packages. The circuit evolved from GP using the Matlab program and is automatically converted into a symbolic netlist also by using a Matlab code. The netlist is fed into symbolic circuit analysis in Matlab (SCAM); the SCAM is used to generate matrices that are used for simulation. In this case, it is used to analyse frequency response of passive low-pass, high-pass and band-pass filter circuits. The algorithm is tested with four different examples and the results presented have proved that the algorithm is efficient concerning the design wise. The work has provided an alternative way of using GP for the evolution of passive filter circuits
    • …
    corecore