3 research outputs found

    Spatially Constrained Location Prior for Scene Parsing

    Full text link
    Semantic context is an important and useful cue for scene parsing in complicated natural images with a substantial amount of variations in objects and the environment. This paper proposes Spatially Constrained Location Prior (SCLP) for effective modelling of global and local semantic context in the scene in terms of inter-class spatial relationships. Unlike existing studies focusing on either relative or absolute location prior of objects, the SCLP effectively incorporates both relative and absolute location priors by calculating object co-occurrence frequencies in spatially constrained image blocks. The SCLP is general and can be used in conjunction with various visual feature-based prediction models, such as Artificial Neural Networks and Support Vector Machine (SVM), to enforce spatial contextual constraints on class labels. Using SVM classifiers and a linear regression model, we demonstrate that the incorporation of SCLP achieves superior performance compared to the state-of-the-art methods on the Stanford background and SIFT Flow datasets.Comment: authors' pre-print version of a article published in IJCNN 201

    Empirical Upper Bound in Object Detection and More

    Full text link
    Object detection remains as one of the most notorious open problems in computer vision. Despite large strides in accuracy in recent years, modern object detectors have started to saturate on popular benchmarks raising the question of how far we can reach with deep learning tools and tricks. Here, by employing 2 state-of-the-art object detection benchmarks, and analyzing more than 15 models over 4 large scale datasets, we I) carefully determine the upperbound in AP, which is 91.6% on VOC (test2007), 78.2% on COCO (val2017), and 58.9% on OpenImages V4 (validation), regardless of the IOU. These numbers are much better than the mAP of the best model1 (47.9% on VOC, and 46.9% on COCO; IOUs=.5:.95), II) characterize the sources of errors in object detectors, in a novel and intuitive way, and find that classification error (confusion with other classes and misses) explains the largest fraction of errors and weighs more than localization and duplicate errors, and III) analyze the invariance properties of models when surrounding context of an object is removed, when an object is placed in an incongruent background, and when images are blurred or flipped vertically. We find that models generate boxes on empty regions and that context is more important for detecting small objects than larger ones. Our work taps into the tight relationship between recognition and detection and offers insights for building better models

    Empirical Upper Bound, Error Diagnosis and Invariance Analysis of Modern Object Detectors

    Full text link
    Object detection remains as one of the most notorious open problems in computer vision. Despite large strides in accuracy in recent years, modern object detectors have started to saturate on popular benchmarks raising the question of how far we can reach with deep learning tools and tricks. Here, by employing 2 state-of-the-art object detection benchmarks, and analyzing more than 15 models over 4 large scale datasets, we I) carefully determine the upper bound in AP, which is 91.6% on VOC (test2007), 78.2% on COCO (val2017), and 58.9% on OpenImages V4 (validation), regardless of the IOU threshold. These numbers are much better than the mAP of the best model (47.9% on VOC, and 46.9% on COCO; IOUs=.5:.05:.95), II) characterize the sources of errors in object detectors, in a novel and intuitive way, and find that classification error (confusion with other classes and misses) explains the largest fraction of errors and weighs more than localization and duplicate errors, and III) analyze the invariance properties of models when surrounding context of an object is removed, when an object is placed in an incongruent background, and when images are blurred or flipped vertically. We find that models generate a lot of boxes on empty regions and that context is more important for detecting small objects than larger ones. Our work taps into the tight relationship between object detection and object recognition and offers insights for building better models. Our code is publicly available at https://github.com/aliborji/Deetctionupper bound.git.Comment: arXiv admin note: substantial text overlap with arXiv:1911.1245
    corecore