271,508 research outputs found
Evaluating Visual Conversational Agents via Cooperative Human-AI Games
As AI continues to advance, human-AI teams are inevitable. However, progress
in AI is routinely measured in isolation, without a human in the loop. It is
crucial to benchmark progress in AI, not just in isolation, but also in terms
of how it translates to helping humans perform certain tasks, i.e., the
performance of human-AI teams.
In this work, we design a cooperative game - GuessWhich - to measure human-AI
team performance in the specific context of the AI being a visual
conversational agent. GuessWhich involves live interaction between the human
and the AI. The AI, which we call ALICE, is provided an image which is unseen
by the human. Following a brief description of the image, the human questions
ALICE about this secret image to identify it from a fixed pool of images.
We measure performance of the human-ALICE team by the number of guesses it
takes the human to correctly identify the secret image after a fixed number of
dialog rounds with ALICE. We compare performance of the human-ALICE teams for
two versions of ALICE. Our human studies suggest a counterintuitive trend -
that while AI literature shows that one version outperforms the other when
paired with an AI questioner bot, we find that this improvement in AI-AI
performance does not translate to improved human-AI performance. This suggests
a mismatch between benchmarking of AI in isolation and in the context of
human-AI teams.Comment: HCOMP 201
Global Solutions vs. Local Solutions for the AI Safety Problem
There are two types of artificial general intelligence (AGI) safety solutions: global and local. Most previously suggested solutions are local: they explain how to align or “box” a specific AI (Artificial Intelligence), but do not explain how to prevent the creation of dangerous AI in other places. Global solutions are those that ensure any AI on Earth is not dangerous. The number of suggested global solutions is much smaller than the number of proposed local solutions. Global solutions can be divided into four groups: 1. No AI: AGI technology is banned or its use is otherwise prevented; 2. One AI: the first superintelligent AI is used to prevent the creation of any others; 3. Net of AIs as AI police: a balance is created between many AIs, so they evolve as a net and can prevent any rogue AI from taking over the world; 4. Humans inside AI: humans are augmented or part of AI. We explore many ideas, both old and new, regarding global solutions for AI safety. They include changing the number of AI teams, different forms of “AI Nanny” (non-self-improving global control AI system able to prevent creation of dangerous AIs), selling AI safety solutions, and sending messages to future AI. Not every local solution scales to a global solution or does it ethically and safely. The choice of the best local solution should include understanding of the ways in which it will be scaled up. Human-AI teams or a superintelligent AI Service as suggested by Drexler may be examples of such ethically scalable local solutions, but the final choice depends on some unknown variables such as the speed of AI progres
Interactive Robot Learning of Gestures, Language and Affordances
A growing field in robotics and Artificial Intelligence (AI) research is
human-robot collaboration, whose target is to enable effective teamwork between
humans and robots. However, in many situations human teams are still superior
to human-robot teams, primarily because human teams can easily agree on a
common goal with language, and the individual members observe each other
effectively, leveraging their shared motor repertoire and sensorimotor
resources. This paper shows that for cognitive robots it is possible, and
indeed fruitful, to combine knowledge acquired from interacting with elements
of the environment (affordance exploration) with the probabilistic observation
of another agent's actions.
We propose a model that unites (i) learning robot affordances and word
descriptions with (ii) statistical recognition of human gestures with vision
sensors. We discuss theoretical motivations, possible implementations, and we
show initial results which highlight that, after having acquired knowledge of
its surrounding environment, a humanoid robot can generalize this knowledge to
the case when it observes another agent (human partner) performing the same
motor actions previously executed during training.Comment: code available at https://github.com/gsaponaro/glu-gesture
Sensemaking Practices in the Everyday Work of AI/ML Software Engineering
This paper considers sensemaking as it relates to everyday software engineering (SE) work practices and draws on a multi-year ethnographic study of SE projects at a large, global technology company building digital services infused with artificial intelligence (AI) and machine learning (ML) capabilities. Our findings highlight the breadth of sensemaking practices in AI/ML projects, noting developers' efforts to make sense of AI/ML environments (e.g., algorithms/methods and libraries), of AI/ML model ecosystems (e.g., pre-trained models and "upstream"models), and of business-AI relations (e.g., how the AI/ML service relates to the domain context and business problem at hand). This paper builds on recent scholarship drawing attention to the integral role of sensemaking in everyday SE practices by empirically investigating how and in what ways AI/ML projects present software teams with emergent sensemaking requirements and opportunities
A Typology of Virtual Teams: Implications for Effective Leadership
As the nature of work in today\u27s organizations becomes more complex, dynamic, and global, there has been an increasing emphasis on far-flung, distributed, virtual teams as organizing units of work. Despite their growing prevalence, relatively little is known about this new form of work unit. The purpose of this paper is to present a theoretical framework to focus research toward understanding virtual teams and, in particular, to identify implications for effective leadership. Specifically, we focus on delineating the dimensions of a typology to characterize different types of virtual teams. First, we distinguish virtual teams from conventional teams to identify where current knowledge applies and new research needs to be developed. Second, we distinguish among different types of virtual teams, considering the critical role of task complexity in determining the underlying characteristics of virtual teams and leadership challenges the different types entail. Propositions addressing leadership implications for the effective management of virtual teams are proposed and discussed
Ethically Aligned Design: An empirical evaluation of the RESOLVEDD-strategy in Software and Systems development context
Use of artificial intelligence (AI) in human contexts calls for ethical
considerations for the design and development of AI-based systems. However,
little knowledge currently exists on how to provide useful and tangible tools
that could help software developers and designers implement ethical
considerations into practice. In this paper, we empirically evaluate a method
that enables ethically aligned design in a decision-making process. Though this
method, titled the RESOLVEDD-strategy, originates from the field of business
ethics, it is being applied in other fields as well. We tested the
RESOLVEDD-strategy in a multiple case study of five student projects where the
use of ethical tools was given as one of the design requirements. A key finding
from the study indicates that simply the presence of an ethical tool has an
effect on ethical consideration, creating more responsibility even in instances
where the use of the tool is not intrinsically motivated.Comment: This is the author's version of the work. The copyright holder's
version can be found at https://doi.org/10.1109/SEAA.2019.0001
- …
