271,508 research outputs found

    Evaluating Visual Conversational Agents via Cooperative Human-AI Games

    Full text link
    As AI continues to advance, human-AI teams are inevitable. However, progress in AI is routinely measured in isolation, without a human in the loop. It is crucial to benchmark progress in AI, not just in isolation, but also in terms of how it translates to helping humans perform certain tasks, i.e., the performance of human-AI teams. In this work, we design a cooperative game - GuessWhich - to measure human-AI team performance in the specific context of the AI being a visual conversational agent. GuessWhich involves live interaction between the human and the AI. The AI, which we call ALICE, is provided an image which is unseen by the human. Following a brief description of the image, the human questions ALICE about this secret image to identify it from a fixed pool of images. We measure performance of the human-ALICE team by the number of guesses it takes the human to correctly identify the secret image after a fixed number of dialog rounds with ALICE. We compare performance of the human-ALICE teams for two versions of ALICE. Our human studies suggest a counterintuitive trend - that while AI literature shows that one version outperforms the other when paired with an AI questioner bot, we find that this improvement in AI-AI performance does not translate to improved human-AI performance. This suggests a mismatch between benchmarking of AI in isolation and in the context of human-AI teams.Comment: HCOMP 201

    Global Solutions vs. Local Solutions for the AI Safety Problem

    Get PDF
    There are two types of artificial general intelligence (AGI) safety solutions: global and local. Most previously suggested solutions are local: they explain how to align or “box” a specific AI (Artificial Intelligence), but do not explain how to prevent the creation of dangerous AI in other places. Global solutions are those that ensure any AI on Earth is not dangerous. The number of suggested global solutions is much smaller than the number of proposed local solutions. Global solutions can be divided into four groups: 1. No AI: AGI technology is banned or its use is otherwise prevented; 2. One AI: the first superintelligent AI is used to prevent the creation of any others; 3. Net of AIs as AI police: a balance is created between many AIs, so they evolve as a net and can prevent any rogue AI from taking over the world; 4. Humans inside AI: humans are augmented or part of AI. We explore many ideas, both old and new, regarding global solutions for AI safety. They include changing the number of AI teams, different forms of “AI Nanny” (non-self-improving global control AI system able to prevent creation of dangerous AIs), selling AI safety solutions, and sending messages to future AI. Not every local solution scales to a global solution or does it ethically and safely. The choice of the best local solution should include understanding of the ways in which it will be scaled up. Human-AI teams or a superintelligent AI Service as suggested by Drexler may be examples of such ethically scalable local solutions, but the final choice depends on some unknown variables such as the speed of AI progres

    Interactive Robot Learning of Gestures, Language and Affordances

    Full text link
    A growing field in robotics and Artificial Intelligence (AI) research is human-robot collaboration, whose target is to enable effective teamwork between humans and robots. However, in many situations human teams are still superior to human-robot teams, primarily because human teams can easily agree on a common goal with language, and the individual members observe each other effectively, leveraging their shared motor repertoire and sensorimotor resources. This paper shows that for cognitive robots it is possible, and indeed fruitful, to combine knowledge acquired from interacting with elements of the environment (affordance exploration) with the probabilistic observation of another agent's actions. We propose a model that unites (i) learning robot affordances and word descriptions with (ii) statistical recognition of human gestures with vision sensors. We discuss theoretical motivations, possible implementations, and we show initial results which highlight that, after having acquired knowledge of its surrounding environment, a humanoid robot can generalize this knowledge to the case when it observes another agent (human partner) performing the same motor actions previously executed during training.Comment: code available at https://github.com/gsaponaro/glu-gesture

    Sensemaking Practices in the Everyday Work of AI/ML Software Engineering

    Get PDF
    This paper considers sensemaking as it relates to everyday software engineering (SE) work practices and draws on a multi-year ethnographic study of SE projects at a large, global technology company building digital services infused with artificial intelligence (AI) and machine learning (ML) capabilities. Our findings highlight the breadth of sensemaking practices in AI/ML projects, noting developers' efforts to make sense of AI/ML environments (e.g., algorithms/methods and libraries), of AI/ML model ecosystems (e.g., pre-trained models and "upstream"models), and of business-AI relations (e.g., how the AI/ML service relates to the domain context and business problem at hand). This paper builds on recent scholarship drawing attention to the integral role of sensemaking in everyday SE practices by empirically investigating how and in what ways AI/ML projects present software teams with emergent sensemaking requirements and opportunities

    A Typology of Virtual Teams: Implications for Effective Leadership

    Get PDF
    As the nature of work in today\u27s organizations becomes more complex, dynamic, and global, there has been an increasing emphasis on far-flung, distributed, virtual teams as organizing units of work. Despite their growing prevalence, relatively little is known about this new form of work unit. The purpose of this paper is to present a theoretical framework to focus research toward understanding virtual teams and, in particular, to identify implications for effective leadership. Specifically, we focus on delineating the dimensions of a typology to characterize different types of virtual teams. First, we distinguish virtual teams from conventional teams to identify where current knowledge applies and new research needs to be developed. Second, we distinguish among different types of virtual teams, considering the critical role of task complexity in determining the underlying characteristics of virtual teams and leadership challenges the different types entail. Propositions addressing leadership implications for the effective management of virtual teams are proposed and discussed

    Ethically Aligned Design: An empirical evaluation of the RESOLVEDD-strategy in Software and Systems development context

    Full text link
    Use of artificial intelligence (AI) in human contexts calls for ethical considerations for the design and development of AI-based systems. However, little knowledge currently exists on how to provide useful and tangible tools that could help software developers and designers implement ethical considerations into practice. In this paper, we empirically evaluate a method that enables ethically aligned design in a decision-making process. Though this method, titled the RESOLVEDD-strategy, originates from the field of business ethics, it is being applied in other fields as well. We tested the RESOLVEDD-strategy in a multiple case study of five student projects where the use of ethical tools was given as one of the design requirements. A key finding from the study indicates that simply the presence of an ethical tool has an effect on ethical consideration, creating more responsibility even in instances where the use of the tool is not intrinsically motivated.Comment: This is the author's version of the work. The copyright holder's version can be found at https://doi.org/10.1109/SEAA.2019.0001
    corecore