332,773 research outputs found
Artificial Intelligence and Statistics
Artificial intelligence (AI) is intrinsically data-driven. It calls for the
application of statistical concepts through human-machine collaboration during
generation of data, development of algorithms, and evaluation of results. This
paper discusses how such human-machine collaboration can be approached through
the statistical concepts of population, question of interest,
representativeness of training data, and scrutiny of results (PQRS). The PQRS
workflow provides a conceptual framework for integrating statistical ideas with
human input into AI products and research. These ideas include experimental
design principles of randomization and local control as well as the principle
of stability to gain reproducibility and interpretability of algorithms and
data results. We discuss the use of these principles in the contexts of
self-driving cars, automated medical diagnoses, and examples from the authors'
collaborative research
Interactive Robot Learning of Gestures, Language and Affordances
A growing field in robotics and Artificial Intelligence (AI) research is
human-robot collaboration, whose target is to enable effective teamwork between
humans and robots. However, in many situations human teams are still superior
to human-robot teams, primarily because human teams can easily agree on a
common goal with language, and the individual members observe each other
effectively, leveraging their shared motor repertoire and sensorimotor
resources. This paper shows that for cognitive robots it is possible, and
indeed fruitful, to combine knowledge acquired from interacting with elements
of the environment (affordance exploration) with the probabilistic observation
of another agent's actions.
We propose a model that unites (i) learning robot affordances and word
descriptions with (ii) statistical recognition of human gestures with vision
sensors. We discuss theoretical motivations, possible implementations, and we
show initial results which highlight that, after having acquired knowledge of
its surrounding environment, a humanoid robot can generalize this knowledge to
the case when it observes another agent (human partner) performing the same
motor actions previously executed during training.Comment: code available at https://github.com/gsaponaro/glu-gesture
Social Intelligence Design in Ambient Intelligence
This Special Issue of AI and Society contains a selection of papers presented at the 6th Social Intelligence Design Workshop held at ITC-irst, Povo (Trento, Italy) in July 2007. Being the 6th in a series means that there now is a well-established and also a growing research area. The interest in this research area is growing because, among other things, current computing technology allows other than the traditional efficiency-oriented applications associated with computer science and interface technology. For example, in Ambient Intelligence (AmI) applications we look at sensor-equipped environments and devices (robots, smart furniture, virtual humans and pets) that support their human inhabitants during their everyday activities. These everyday activities also include computer-mediated communication, collaboration and community activities
How to Blend Journalistic Expertise with Artificial Intelligence for Research and Verifying News Stories
The use of AI technology can help to automate news verification workflows, while significantly innovating journalism practices. However, most existing systems are designed in isolation without interactive collaboration with journalists. ‘DMINR’ project aims to bring humans-at-the-center of AI loop for developing a powerful tool that is sympathetic to the way journalists work. In this paper, we attempt to understand how AI can shape journalists’ practices and, crucially, be shaped by them; we aim to design human-centred AI tool that works in synergy with journalists’ practices and strike a useful balance between human and machine intelligence. In this paper, we conducted a Co-design workshop to inform the design of the ‘DMINR’ system. Based on the findings, we outline the main challenges for designing AI systems in the context of journalism, that can serve as a resource for Human-AI interaction design
Macro action selection with deep reinforcement learning in StarCraft
StarCraft (SC) is one of the most popular and successful Real Time Strategy
(RTS) games. In recent years, SC is also widely accepted as a challenging
testbed for AI research because of its enormous state space, partially observed
information, multi-agent collaboration, and so on. With the help of annual
AIIDE and CIG competitions, a growing number of SC bots are proposed and
continuously improved. However, a large gap remains between the top-level bot
and the professional human player. One vital reason is that current SC bots
mainly rely on predefined rules to select macro actions during their games.
These rules are not scalable and efficient enough to cope with the enormous yet
partially observed state space in the game. In this paper, we propose a deep
reinforcement learning (DRL) framework to improve the selection of macro
actions. Our framework is based on the combination of the Ape-X DQN and the
Long-Short-Term-Memory (LSTM). We use this framework to build our bot, named as
LastOrder. Our evaluation, based on training against all bots from the AIIDE
2017 StarCraft AI competition set, shows that LastOrder achieves an 83% winning
rate, outperforming 26 bots in total 28 entrants
- …
