31 research outputs found

    Learning Dynamic Robot-to-Human Object Handover from Human Feedback

    Full text link
    Object handover is a basic, but essential capability for robots interacting with humans in many applications, e.g., caring for the elderly and assisting workers in manufacturing workshops. It appears deceptively simple, as humans perform object handover almost flawlessly. The success of humans, however, belies the complexity of object handover as collaborative physical interaction between two agents with limited communication. This paper presents a learning algorithm for dynamic object handover, for example, when a robot hands over water bottles to marathon runners passing by the water station. We formulate the problem as contextual policy search, in which the robot learns object handover by interacting with the human. A key challenge here is to learn the latent reward of the handover task under noisy human feedback. Preliminary experiments show that the robot learns to hand over a water bottle naturally and that it adapts to the dynamics of human motion. One challenge for the future is to combine the model-free learning algorithm with a model-based planning approach and enable the robot to adapt over human preferences and object characteristics, such as shape, weight, and surface texture.Comment: Appears in the Proceedings of the International Symposium on Robotics Research (ISRR) 201

    A Study of Human-Robot Handover through Human-Human Object Transfer

    Full text link
    In this preliminary study, we investigate changes in handover behaviour when transferring hazardous objects with the help of a high-resolution touch sensor. Participants were asked to hand over a safe and hazardous object (a full cup and an empty cup) while instrumented with a modified STS sensor. Our data shows a clear distinction in the length of handover for the full cup vs the empty one, with the former being slower. Sensor data further suggests a change in tactile behaviour dependent on the object's risk factor. The results of this paper motivate a deeper study of tactile factors which could characterize a risky handover, allowing for safer human-robot interactions in the future.Comment: 8 pages, 5 figures, appeared in NeurIPS 2022 Workshop on Human in the Loop Learnin

    Human-AI Collaboration in Content Moderation: The Effects of Information Cues and Time Constraints

    Get PDF
    An extremely large amount of user-generated content is produced by users worldwide every day with the rapid development of online social media. Content moderation has emerged to ensure the quality of posts on various social media platforms. This process typically demands collaboration between humans and AI because of the complementarity of the two agents in different facets. Wondering how AI can better assist humans to make final judgment in the “machine-in-the-loop” paradigm, we propose a lab experiment to explore the influence of different types of cues provided by AI through a nudging approach as well as time constraints on human moderators’ performance. The proposed study contributes to the literature on the AI-assisted decision-making pattern, and helps social media platforms in creating an effective human-AI collaboration framework for content moderation

    Affordance-Aware Handovers With Human Arm Mobility Constraints

    Get PDF
    Reasoning about object handover configurations allows an assistive agent to estimate the appropriateness of handover for a receiver with different arm mobility capacities. While there are existing approaches for estimating the effectiveness of handovers, their findings are limited to users without arm mobility impairments and to specific objects. Therefore, current state-of-the-art approaches are unable to hand over novel objects to receivers with different arm mobility capacities. We propose a method that generalises handover behaviours to previously unseen objects, subject to the constraint of a user's arm mobility levels and the task context. We propose a heuristic-guided hierarchically optimised cost whose optimisation adapts object configurations for receivers with low arm mobility. This also ensures that the robot grasps consider the context of the user's upcoming task, i.e., the usage of the object. To understand preferences over handover configurations, we report on the findings of an online study, wherein we presented different handover methods, including ours, to 259259 users with different levels of arm mobility. We find that people's preferences over handover methods are correlated to their arm mobility capacities. We encapsulate these preferences in a statistical relational model (SRL) that is able to reason about the most suitable handover configuration given a receiver's arm mobility and upcoming task. Using our SRL model, we obtained an average handover accuracy of 90.8%90.8\% when generalising handovers to novel objects.Comment: Accepted for RA-L 202

    In-Mouth Robotic Bite Transfer with Visual and Haptic Sensing

    Full text link
    Assistance during eating is essential for those with severe mobility issues or eating risks. However, dependence on traditional human caregivers is linked to malnutrition, weight loss, and low self-esteem. For those who require eating assistance, a semi-autonomous robotic platform can provide independence and a healthier lifestyle. We demonstrate an essential capability of this platform: safe, comfortable, and effective transfer of a bite-sized food item from a utensil directly to the inside of a person's mouth. Our system uses a force-reactive controller to safely accommodate the user's motions throughout the transfer, allowing full reactivity until bite detection then reducing reactivity in the direction of exit. Additionally, we introduce a novel dexterous wrist-like end effector capable of small, unimposing movements to reduce user discomfort. We conduct a user study with 11 participants covering 8 diverse food categories to evaluate our system end-to-end, and we find that users strongly prefer our method to a wide range of baselines. Appendices and videos are available at our website: https://tinyurl.com/btICRA.Comment: Accepted to ICRA 202
    corecore