159,270 research outputs found

    Visual Affordance and Function Understanding: A Survey

    Full text link
    Nowadays, robots are dominating the manufacturing, entertainment and healthcare industries. Robot vision aims to equip robots with the ability to discover information, understand it and interact with the environment. These capabilities require an agent to effectively understand object affordances and functionalities in complex visual domains. In this literature survey, we first focus on Visual affordances and summarize the state of the art as well as open problems and research gaps. Specifically, we discuss sub-problems such as affordance detection, categorization, segmentation and high-level reasoning. Furthermore, we cover functional scene understanding and the prevalent functional descriptors used in the literature. The survey also provides necessary background to the problem, sheds light on its significance and highlights the existing challenges for affordance and functionality learning.Comment: 26 pages, 22 image

    Human Action Recognition and Prediction: A Survey

    Full text link
    Derived from rapid advances in computer vision and machine learning, video analysis tasks have been moving from inferring the present state to predicting the future state. Vision-based action recognition and prediction from videos are such tasks, where action recognition is to infer human actions (present state) based upon complete action executions, and action prediction to predict human actions (future state) based upon incomplete action executions. These two tasks have become particularly prevalent topics recently because of their explosively emerging real-world applications, such as visual surveillance, autonomous driving vehicle, entertainment, and video retrieval, etc. Many attempts have been devoted in the last a few decades in order to build a robust and effective framework for action recognition and prediction. In this paper, we survey the complete state-of-the-art techniques in the action recognition and prediction. Existing models, popular algorithms, technical difficulties, popular action databases, evaluation protocols, and promising future directions are also provided with systematic discussions

    Space-Time Representation of People Based on 3D Skeletal Data: A Review

    Full text link
    Spatiotemporal human representation based on 3D visual perception data is a rapidly growing research area. Based on the information sources, these representations can be broadly categorized into two groups based on RGB-D information or 3D skeleton data. Recently, skeleton-based human representations have been intensively studied and kept attracting an increasing attention, due to their robustness to variations of viewpoint, human body scale and motion speed as well as the realtime, online performance. This paper presents a comprehensive survey of existing space-time representations of people based on 3D skeletal data, and provides an informative categorization and analysis of these methods from the perspectives, including information modality, representation encoding, structure and transition, and feature engineering. We also provide a brief overview of skeleton acquisition devices and construction methods, enlist a number of public benchmark datasets with skeleton data, and discuss potential future research directions.Comment: Our paper has been accepted by the journal Computer Vision and Image Understanding, see http://www.sciencedirect.com/science/article/pii/S1077314217300279, Computer Vision and Image Understanding, 201

    Skeleton Focused Human Activity Recognition in RGB Video

    Full text link
    The data-driven approach that learns an optimal representation of vision features like skeleton frames or RGB videos is currently a dominant paradigm for activity recognition. While great improvements have been achieved from existing single modal approaches with increasingly larger datasets, the fusion of various data modalities at the feature level has seldom been attempted. In this paper, we propose a multimodal feature fusion model that utilizes both skeleton and RGB modalities to infer human activity. The objective is to improve the activity recognition accuracy by effectively utilizing the mutual complemental information among different data modalities. For the skeleton modality, we propose to use a graph convolutional subnetwork to learn the skeleton representation. Whereas for the RGB modality, we will use the spatial-temporal region of interest from RGB videos and take the attention features from the skeleton modality to guide the learning process. The model could be either individually or uniformly trained by the back-propagation algorithm in an end-to-end manner. The experimental results for the NTU-RGB+D and Northwestern-UCLA Multiview datasets achieved state-of-the-art performance, which indicates that the proposed skeleton-driven attention mechanism for the RGB modality increases the mutual communication between different data modalities and brings more discriminative features for inferring human activities.Comment: 8 page

    Crowd Behavior Analysis: A Review where Physics meets Biology

    Full text link
    Although the traits emerged in a mass gathering are often non-deliberative, the act of mass impulse may lead to irre- vocable crowd disasters. The two-fold increase of carnage in crowd since the past two decades has spurred significant advances in the field of computer vision, towards effective and proactive crowd surveillance. Computer vision stud- ies related to crowd are observed to resonate with the understanding of the emergent behavior in physics (complex systems) and biology (animal swarm). These studies, which are inspired by biology and physics, share surprisingly common insights, and interesting contradictions. However, this aspect of discussion has not been fully explored. Therefore, this survey provides the readers with a review of the state-of-the-art methods in crowd behavior analysis from the physics and biologically inspired perspectives. We provide insights and comprehensive discussions for a broader understanding of the underlying prospect of blending physics and biology studies in computer vision.Comment: Accepted in Neurocomputing, 31 pages, 180 reference

    A Deep Structured Model with Radius-Margin Bound for 3D Human Activity Recognition

    Full text link
    Understanding human activity is very challenging even with the recently developed 3D/depth sensors. To solve this problem, this work investigates a novel deep structured model, which adaptively decomposes an activity instance into temporal parts using the convolutional neural networks (CNNs). Our model advances the traditional deep learning approaches in two aspects. First, { we incorporate latent temporal structure into the deep model, accounting for large temporal variations of diverse human activities. In particular, we utilize the latent variables to decompose the input activity into a number of temporally segmented sub-activities, and accordingly feed them into the parts (i.e. sub-networks) of the deep architecture}. Second, we incorporate a radius-margin bound as a regularization term into our deep model, which effectively improves the generalization performance for classification. For model training, we propose a principled learning algorithm that iteratively (i) discovers the optimal latent variables (i.e. the ways of activity decomposition) for all training instances, (ii) { updates the classifiers} based on the generated features, and (iii) updates the parameters of multi-layer neural networks. In the experiments, our approach is validated on several complex scenarios for human activity recognition and demonstrates superior performances over other state-of-the-art approaches.Comment: 16 pages, 9 figures, to appear in International Journal of Computer Vision 201

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    Person Identification with Visual Summary for a Safe Access to a Smart Home

    Full text link
    SafeAccess is an integrated system designed to provide easier and safer access to a smart home for people with or without disabilities. The system is designed to enhance safety and promote the independence of people with disability (i.e., visually impaired). The key functionality of the system includes the detection and identification of human and generating contextual visual summary from the real-time video streams obtained from the cameras placed in strategic locations around the house. In addition, the system classifies human into groups (i.e. friends/families/caregiver versus intruders/burglars/unknown). These features allow the user to grant/deny remote access to the premises or ability to call emergency services. In this paper, we focus on designing a prototype system for the smart home and building a robust recognition engine that meets the system criteria and addresses speed, accuracy, deployment and environmental challenges under a wide variety of practical and real-life situations. To interact with the system, we implemented a dialog enabled interface to create a personalized profile using face images or video of friend/families/caregiver. To improve computational efficiency, we apply change detection to filter out frames and use Faster-RCNN to detect the human presence and extract faces using Multitask Cascaded Convolutional Networks (MTCNN). Subsequently, we apply LBP/FaceNet to identify a person and groups by matching extracted faces with the profile. SafeAccess sends a visual summary to the users with an MMS containing a person's name if any match found or as "Unknown", scene image, facial description, and contextual information. SafeAccess identifies friends/families/caregiver versus intruders/unknown with an average F-score 0.97 and generates a visual summary from 10 classes with an average accuracy of 98.01%

    Understanding hand-object manipulation by modeling the contextual relationship between actions, grasp types and object attributes

    Full text link
    This paper proposes a novel method for understanding daily hand-object manipulation by developing computer vision-based techniques. Specifically, we focus on recognizing hand grasp types, object attributes and manipulation actions within an unified framework by exploring their contextual relationships. Our hypothesis is that it is necessary to jointly model hands, objects and actions in order to accurately recognize multiple tasks that are correlated to each other in hand-object manipulation. In the proposed model, we explore various semantic relationships between actions, grasp types and object attributes, and show how the context can be used to boost the recognition of each component. We also explore the spatial relationship between the hand and object in order to detect the manipulated object from hand in cluttered environment. Experiment results on all three recognition tasks show that our proposed method outperforms traditional appearance-based methods which are not designed to take into account contextual relationships involved in hand-object manipulation. The visualization and generalizability study of the learned context further supports our hypothesis.Comment: 14 pages, 13 figure

    On Encoding Temporal Evolution for Real-time Action Prediction

    Full text link
    Anticipating future actions is a key component of intelligence, specifically when it applies to real-time systems, such as robots or autonomous cars. While recent works have addressed prediction of raw RGB pixel values, we focus on anticipating the motion evolution in future video frames. To this end, we construct dynamic images (DIs) by summarising moving pixels through a sequence of future frames. We train a convolutional LSTMs to predict the next DIs based on an unsupervised learning process, and then recognise the activity associated with the predicted DI. We demonstrate the effectiveness of our approach on 3 benchmark action datasets showing that despite running on videos with complex activities, our approach is able to anticipate the next human action with high accuracy and obtain better results than the state-of-the-art methods.Comment: Submitted Versio
    • …
    corecore