1,595,411 research outputs found

    Anthropomorphism Index of Mobility for Artificial Hands

    Get PDF
    The increasing development of anthropomorphic artificial hands makes necessary quick metrics that analyze their anthropomorphism. In this study, a human grasp experiment on the most important grasp types was undertaken in order to obtain an Anthropomorphism Index of Mobility (AIM) for artificial hands. The AIM evaluates the topology of the whole hand, joints and degrees of freedom (DoFs), and the possibility to control these DoFs independently. It uses a set of weighting factors, obtained from analysis of human grasping, depending on the relevance of the different groups of DoFs of the hand. The computation of the index is straightforward, making it a useful tool for analyzing new artificial hands in early stages of the design process and for grading human-likeness of existing artificial hands. Thirteen artificial hands, both prosthetic and robotic, were evaluated and compared using the AIM, highlighting the reasons behind their differences. The AIM was also compared with other indexes in the literature with more cumbersome computation, ranking equally different artificial hands. As the index was primarily proposed for prosthetic hands, normally used as nondominant hands in unilateral amputees, the grasp types selected for the human grasp experiment were the most relevant for the human nondominant hand to reinforce bimanual grasping in activities of daily living. However, it was shown that the effect of using the grasping information from the dominant hand is small, indicating that the index is also valid for evaluating the artificial hand as dominant and so being valid for bilateral amputees or robotic hands

    "Sticky Hands": learning and generalization for cooperative physical interactions with a humanoid robot

    Get PDF
    "Sticky Hands" is a physical game for two people involving gentle contact with the hands. The aim is to develop relaxed and elegant motion together, achieve physical sensitivity-improving reactions, and experience an interaction at an intimate yet comfortable level for spiritual development and physical relaxation. We developed a control system for a humanoid robot allowing it to play Sticky Hands with a human partner. We present a real implementation including a physical system, robot control, and a motion learning algorithm based on a generalizable intelligent system capable itself of generalizing observed trajectories' translation, orientation, scale and velocity to new data, operating with scalable speed and storage efficiency bounds, and coping with contact trajectories that evolve over time. Our robot control is capable of physical cooperation in a force domain, using minimal sensor input. We analyze robot-human interaction and relate characteristics of our motion learning algorithm with recorded motion profiles. We discuss our results in the context of realistic motion generation and present a theoretical discussion of stylistic and affective motion generation based on, and motivating cross-disciplinary research in computer graphics, human motion production and motion perception

    Sensing human hand motions for controlling dexterous robots

    Get PDF
    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion

    Electroencephalogram evidence for the activation of human mirror neuron system during the observation of intransitive shadow and line drawing actions

    Get PDF
    This article is available open access from the NCBI website at the link below. Copyright 2013 © Neural Regeneration Research. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Previous studies have demonstrated that hand shadows may activate the motor cortex associated with the mirror neuron system in human brain. However, there is no evidence of activity of the human mirror neuron system during the observation of intransitive movements by shadows and line drawings of hands. This study examined the suppression of electroencephalography mu waves (8–13 Hz) induced by observation of stimuli in 18 healthy students. Three stimuli were used: real hand actions, hand shadow actions and actions made by line drawings of hands. The results showed significant desynchronization of the mu rhythm (“mu suppression”) across the sensorimotor cortex (recorded at C3, Cz and C4), the frontal cortex (recorded at F3, Fz and F4) and the central and right posterior parietal cortex (recorded at Pz and P4) under all three conditions. Our experimental findings suggest that the observation of “impoverished hand actions”, such as intransitive movements of shadows and line drawings of hands, is able to activate widespread cortical areas related to the putative human mirror neuron system.The National Natural Science Foundation of China and the Research Fund for the Doctoral Program of Higher Education of China

    Detecting Hands in Egocentric Videos: Towards Action Recognition

    Full text link
    Recently, there has been a growing interest in analyzing human daily activities from data collected by wearable cameras. Since the hands are involved in a vast set of daily tasks, detecting hands in egocentric images is an important step towards the recognition of a variety of egocentric actions. However, besides extreme illumination changes in egocentric images, hand detection is not a trivial task because of the intrinsic large variability of hand appearance. We propose a hand detector that exploits skin modeling for fast hand proposal generation and Convolutional Neural Networks for hand recognition. We tested our method on UNIGE-HANDS dataset and we showed that the proposed approach achieves competitive hand detection results

    Our Mission to Planet Earth: A Guide to Teaching Earth System Science

    Get PDF
    This teaching guide provides hands-on activities and information related to studying the Earth system. Its primary goal is for children to become familiar with the concept of cycles and to learn that some human activities can cause changes in their environment. Educational levels: Primary elementary

    Neural Basis of Motivation Lateralizes with Motor Control

    Get PDF
    According to decades of research on affective motivation in the human brain, approach motivational states are subserved by the left hemisphere and avoidance states by the right hemisphere. Here we show that hemispheric specialization for motivation reverses with handedness. This covariation provides initial support for the Sword and Shield Hypothesis, according to which hemispheric laterality of affective motivation is causally linked to motor control for the dominant and non-dominant hands
    corecore