7,032 research outputs found

    GAZE ESTIMATION USING SCLERA AND IRIS EXTRACTION

    Get PDF
    Tracking gaze of an individual provides important information in understanding the behavior of that person. Gaze tracking has been widely used in a variety of applications from tracking consumers gaze fixation on advertisements, controlling human-computer devices, to understanding behaviors of patients with various types of visual and/or neurological disorders such as autism. Gaze pattern can be identified using different methods but most of them require the use of specialized equipments which can be prohibitively expensive for some applications. In this dissertation, we investigate the possibility of using sclera and iris regions captured in a webcam sequence to estimate gaze pattern. The sclera and iris regions in the video frame are first extracted by using an adaptive thresholding technique. The gaze pattern is then determined based on areas of different sclera and iris regions and distances between tracked points along the irises. The technique is novel as sclera regions are often ignored in eye tracking literature while we have demonstrated that they can be easily extracted from images captured by low-cost camera and are useful in determining the gaze pattern. The accuracy and computational efficiency of the proposed technique is demonstrated by experiments with human subjects

    Segmentation of images by color features: a survey

    Get PDF
    En este articulo se hace la revisión del estado del arte sobre la segmentación de imagenes de colorImage segmentation is an important stage for object recognition. Many methods have been proposed in the last few years for grayscale and color images. In this paper, we present a deep review of the state of the art on color image segmentation methods; through this paper, we explain the techniques based on edge detection, thresholding, histogram-thresholding, region, feature clustering and neural networks. Because color spaces play a key role in the methods reviewed, we also explain in detail the most commonly color spaces to represent and process colors. In addition, we present some important applications that use the methods of image segmentation reviewed. Finally, a set of metrics frequently used to evaluate quantitatively the segmented images is shown

    A Neural Model of Visually Guided Steering, Obstacle Avoidance, and Route Selection

    Full text link
    A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3D virtual reality environment to determine the position of objects based on motion discontinuities, and computes heading direction, or the direction of self-motion, from global optic flow. The cortical representation of heading interacts with the representations of a goal and obstacles such that the goal acts as an attractor of heading, while obstacles act as repellers. In addition the model maintains fixation on the goal object by generating smooth pursuit eye movements. Eye rotations can distort the optic flow field, complicating heading perception, and the model uses extraretinal signals to correct for this distortion and accurately represent heading. The model explains how motion processing mechanisms in cortical areas MT, MST, and posterior parietal cortex can be used to guide steering. The model quantitatively simulates human psychophysical data about visually-guided steering, obstacle avoidance, and route selection.Air Force Office of Scientific Research (F4960-01-1-0397); National Geospatial-Intelligence Agency (NMA201-01-1-2016); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    Learning as a Nonlinear Line of Attraction for Pattern Association, Classification and Recognition

    Get PDF
    Development of a mathematical model for learning a nonlinear line of attraction is presented in this dissertation, in contrast to the conventional recurrent neural network model in which the memory is stored in an attractive fixed point at discrete location in state space. A nonlinear line of attraction is the encapsulation of attractive fixed points scattered in state space as an attractive nonlinear line, describing patterns with similar characteristics as a family of patterns. It is usually of prime imperative to guarantee the convergence of the dynamics of the recurrent network for associative learning and recall. We propose to alter this picture. That is, if the brain remembers by converging to the state representing familiar patterns, it should also diverge from such states when presented by an unknown encoded representation of a visual image. The conception of the dynamics of the nonlinear line attractor network to operate between stable and unstable states is the second contribution in this dissertation research. These criteria can be used to circumvent the plasticity-stability dilemma by using the unstable state as an indicator to create a new line for an unfamiliar pattern. This novel learning strategy utilizes stability (convergence) and instability (divergence) criteria of the designed dynamics to induce self-organizing behavior. The self-organizing behavior of the nonlinear line attractor model can manifest complex dynamics in an unsupervised manner. The third contribution of this dissertation is the introduction of the concept of manifold of color perception. The fourth contribution of this dissertation is the development of a nonlinear dimensionality reduction technique by embedding a set of related observations into a low-dimensional space utilizing the result attained by the learned memory matrices of the nonlinear line attractor network. Development of a system for affective states computation is also presented in this dissertation. This system is capable of extracting the user\u27s mental state in real time using a low cost computer. It is successfully interfaced with an advanced learning environment for human-computer interaction

    Automatic human face detection in color images

    Get PDF
    Automatic human face detection in digital image has been an active area of research over the past decade. Among its numerous applications, face detection plays a key role in face recognition system for biometric personal identification, face tracking for intelligent human computer interface (HCI), and face segmentation for object-based video coding. Despite significant progress in the field in recent years, detecting human faces in unconstrained and complex images remains a challenging problem in computer vision. An automatic system that possesses a similar capability as the human vision system in detecting faces is still a far-reaching goal. This thesis focuses on the problem of detecting human laces in color images. Although many early face detection algorithms were designed to work on gray-scale Images, strong evidence exists to suggest face detection can be done more efficiently by taking into account color characteristics of the human face. In this thesis, we present a complete and systematic face detection algorithm that combines the strengths of both analytic and holistic approaches to face detection. The algorithm is developed to detect quasi-frontal faces in complex color Images. This face class, which represents typical detection scenarios in most practical applications of face detection, covers a wide range of face poses Including all in-plane rotations and some out-of-plane rotations. The algorithm is organized into a number of cascading stages including skin region segmentation, face candidate selection, and face verification. In each of these stages, various visual cues are utilized to narrow the search space for faces. In this thesis, we present a comprehensive analysis of skin detection using color pixel classification, and the effects of factors such as the color space, color classification algorithm on segmentation performance. We also propose a novel and efficient face candidate selection technique that is based on color-based eye region detection and a geometric face model. This candidate selection technique eliminates the computation-intensive step of window scanning often employed In holistic face detection, and simplifies the task of detecting rotated faces. Besides various heuristic techniques for face candidate verification, we developface/nonface classifiers based on the naive Bayesian model, and investigate three feature extraction schemes, namely intensity, projection on face subspace and edge-based. Techniques for improving face/nonface classification are also proposed, including bootstrapping, classifier combination and using contextual information. On a test set of face and nonface patterns, the combination of three Bayesian classifiers has a correct detection rate of 98.6% at a false positive rate of 10%. Extensive testing results have shown that the proposed face detector achieves good performance in terms of both detection rate and alignment between the detected faces and the true faces. On a test set of 200 images containing 231 faces taken from the ECU face detection database, the proposed face detector has a correct detection rate of 90.04% and makes 10 false detections. We have found that the proposed face detector is more robust In detecting in-plane rotated laces, compared to existing face detectors. +D2

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    A Fast and Accurate Iris Localization Technique for Healthcare Security System

    Get PDF
    yesIn the health care systems, a high security level is required to protect extremely sensitive patient records. The goal is to provide a secure access to the right records at the right time with high patient privacy. As the most accurate biometric system, the iris recognition can play a significant role in healthcare applications for accurate patient identification. In this paper, the corner stone towards building a fast and robust iris recognition system for healthcare applications is addressed, which is known as iris localization. Iris localization is an essential step for efficient iris recognition systems. The presence of extraneous features such as eyelashes, eyelids, pupil and reflection spots make the correct iris localization challenging. In this paper, an efficient and automatic method is presented for the inner and outer iris boundary localization. The inner pupil boundary is detected after eliminating specular reflections using a combination of thresholding and morphological operations. Then, the outer iris boundary is detected using the modified Circular Hough transform. An efficient preprocessing procedure is proposed to enhance the iris boundary by applying 2D Gaussian filter and Histogram equalization processes. In addition, the pupil’s parameters (e.g. radius and center coordinates) are employed to reduce the search time of the Hough transform by discarding the unnecessary edge points within the iris region. Finally, a robust and fast eyelids detection algorithm is developed which employs an anisotropic diffusion filter with Radon transform to fit the upper and lower eyelids boundaries. The performance of the proposed method is tested on two databases: CASIA Version 1.0 and SDUMLA-HMT iris database. The Experimental results demonstrate the efficiency of the proposed method. Moreover, a comparative study with other established methods is also carried out
    • …
    corecore