4,609 research outputs found

    New control strategies for neuroprosthetic systems

    Get PDF
    The availability of techniques to artificially excite paralyzed muscles opens enormous potential for restoring both upper and lower extremity movements with\ud neuroprostheses. Neuroprostheses must stimulate muscle, and control and regulate the artificial movements produced. Control methods to accomplish these tasks include feedforward (open-loop), feedback, and adaptive control. Feedforward control requires a great deal of information about the biomechanical behavior of the limb. For the upper extremity, an artificial motor program was developed to provide such movement program input to a neuroprosthesis. In lower extremity control, one group achieved their best results by attempting to meet naturally perceived gait objectives rather than to follow an exact joint angle trajectory. Adaptive feedforward control, as implemented in the cycleto-cycle controller, gave good compensation for the gradual decrease in performance observed with open-loop control. A neural network controller was able to control its system to customize stimulation parameters in order to generate a desired output trajectory in a given individual and to maintain tracking performance in the presence of muscle fatigue. The authors believe that practical FNS control systems must\ud exhibit many of these features of neurophysiological systems

    Inertial Load Compensation by a Model Spinal Circuit During Single Joint Movement

    Full text link
    Office of Naval Research (N00014-92-J-1309); CONACYT (Mexico) (63462

    Inter-Joint Coordination Deficits Revealed in the Decomposition of Endpoint Jerk During Goal-Directed Arm Movement After Stroke

    Get PDF
    It is well documented that neurological deficits after stroke can disrupt motor control processes that affect the smoothness of reaching movements. The smoothness of hand trajectories during multi-joint reaching depends on shoulder and elbow joint angular velocities and their successive derivatives as well as on the instantaneous arm configuration and its rate of change. Right-handed survivors of unilateral hemiparetic stroke and neurologically-intact control participants held the handle of a two-joint robot and made horizontal planar reaching movements. We decomposed endpoint jerk into components related to shoulder and elbow joint angular velocity, acceleration, and jerk. We observed an abnormal decomposition pattern in the most severely impaired stroke survivors consistent with deficits of inter-joint coordination. We then used numerical simulations of reaching movements to test whether the specific pattern of inter-joint coordination deficits observed experimentally could be explained by either a general increase in motor noise related to weakness or by an impaired ability to compensate for multi-joint interaction torque. Simulation results suggest that observed deficits in movement smoothness after stroke more likely reflect an impaired ability to compensate for multi-joint interaction torques rather than the mere presence of elevated motor noise

    Adaptive Neural Networks for Control of Movement Trajectories Invariant under Speed and Force Rescaling

    Full text link
    This article describes two neural network modules that form part of an emerging theory of how adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals. The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajectories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion (FLETE) model suggests how outflow movement commands from a VITE model may be performed at variable force levels without a loss of positional accuracy. The invariance of positional control under speed and force rescaling sheds new light upon a familiar strategy of motor skill development: Skill learning begins with performance at low speed and low limb compliance and proceeds to higher speeds and compliances. The VITE model helps to explain many neural and behavioral data about trajectory formation, including data about neural coding within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties such as Woodworth's Law, Fitts Law, peak acceleration as a function of movement amplitude and duration, isotonic arm movement properties before and after arm-deafferentation, central error correction properties of isometric contractions, motor priming without overt action, velocity amplification during target switching, velocity profile invariance across different movement distances, changes in velocity profile asymmetry across different movement durations, staggered onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of maximum to average velocity during discrete versus serial movements, and shared properties of arm and speech articulator movements. The FLETE model provides new insights into how spina-muscular circuits process variable forces without a loss of positional control. These results explicate the size principle of motor neuron recruitment, descending co-contractive compliance signals, Renshaw cells, Ia interneurons, fast automatic reactive control by ascending feedback from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle error signals to train adaptive movement gains, fractured somatotopy in the opponent organization of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback from Golgi tendon organs. More generally, the models provide a computational rationale for the use of nonspecific control signals in volitional control, or "acts of will", and of efference copies and opponent processing in both reactive and adaptive motor control tasks.National Science Foundation (IRI-87-16960); Air Force Office of Scientific Research (90-0128, 90-0175

    Cortical Networks for Control of Voluntary Arm Movements Under Variable Force Conditions

    Full text link
    A neural model of voluntary movement and proprioception functionally interprets and simulates cell types in movement related areas of primate cortex. The model circuit maintains accurate proprioception while controlling voluntary reaches to spatial targets, exertion of force against obstacles, posture maintenance despite perturbations, compliance with an imposed movement, and static and inertial load compensations. Computer simulations show that model cell properties mimic cell properties in areas 4 and 5. These include delay period activation, response profiles during movement, kinematic and kinetic sensitivities, and latency of activity onset. Model area 4 phasic and tonic cells compute velocity and position commands which activate alpha and gamma motor neurons, thereby shifting the mechanical equilibrium point. Anterior area 5 cells compute limb position using corollary discharges from area 4 and muscle spindle feedback. Posterior area 5 cells use the perceived position and target position signals to compute a desired movement vector. The cortical loop is closed by a volition-gated projection of this movement vector to area 4 phasic cells. Phasic-tonic cells in area 4 incorporate force command components to compensate for static and inertial loads. Predictions are made for both motor and parietal cell types under novel experimental protocols.Office of Naval Research (N00014-92-J-1309, N00014-93-1-1364, N00014-95-l-0409, N00014-92-J-4015); National Science Foundation (IRI-90-24877, IRI-90-00530

    Equilibria and Dynamics of a Neural Network Model for Opponent Muscle Control

    Full text link
    One of the advantages of biological skeleto-motor systems is the opponent muscle design, which in principle makes it possible to achieve facile independent control of joint angle and joint stiffness. Prior analysis of equilibrium states of a biologically-based neural network for opponent muscle control, the FLETE model, revealed that such independent control requires specialized interneuronal circuitry to efficiently coordinate the opponent force generators. In this chapter, we refine the FLETE circuit variables specification and update the equilibrium analysis. We also incorporate additional neuronal circuitry that ensures efficient opponent force generation and velocity regulation during movement.National Science Foundation (IRI-90-24877); Consejo Nacional de Ciencia y Tecnologia, Méxic

    Modeling of equilibrium point trajectory control in human arm movements

    Get PDF
    The underlying concept of the Equilibrium Point Hypothesis (EPH) is that the CNS provides a virtual trajectory of joint motion, representing spacing and timing, with actual movement dynamics being produced by interactions of limb inertia, muscle viscosity and speed/position feedback from muscle spindles. To counter criticisms of the EPH, investigators have proposed the use of complex virtual trajectories, non-linear damping, stiffness and time varying stiffness to the EPH model. While these features allow the EPH to adequately produce human joint velocities, they conflict with the EPH’s premise of simple pre-planned monotonic control of movement trajectory. As a result, this study proposed an EPH based method, which provides a simpler mechanism in motor control without conflict with the core advantages of the original approach. This work has proposed relative damping as an addition to the EPH model to predict the single and two joint arm movements. This addition results in simulated data that not only closely match experimental angle data, but also match the experimental joint torques. In addition, it is suggested that this modified model can be used to predict the multi-joint angular trajectories with fast and normal velocities, without the need for time varying or non-linear stiffness and damping, but with simple monotonic virtual trajectories. In the following study, this relative damping model has been further enhanced with an EMG-based determination of the virtual trajectory and with physiologically realistic neuromuscular delays. The results of unobstructed voluntary movement studies suggest that the EPH models use realistic impedance values and produce desired joint trajectories and joint torques in unperturbed voluntary arm movement. A subsequent study of obstructed voluntary arm movement extended the relative damping concept, and incorporated the influential factors of the mechanical behavior of the neural, muscular and skeletal system in the control and coordination of arm posture and movement. A significant problem of the study is how this information should be used to modify control signals to achieve desired performance. This study used an EPH model to examine changes of controlling signals for arm movements in the context of adding perturbation/load in the form of forces/torques. The mechanical properties and reflex actions of muscles of the elbow joint were examined. Brief unexpected torque/force pulses of identical magnitude and time duration were introduced at different stages of the movement in a random order by a pre-programmed 3 degree of freedom (DOF) robotic arm (MOOG FCS HapticMaster). The results show that the subjects may maintain the same control parameters (virtual trajectory, stiffness and damping) regardless of added perturbations that cause substantial changes in EMG activity and kinematics

    Emergence of Tri-Phasic Muscle Activation from the Non-linear Interactions of Central and Spinal Neural Network Circuits

    Full text link
    The origin of the tri-phasic burst pattern, observed in the EMGs of opponent muscles during rapid self-terminated movements, has been controversial. Here we show by computer simulation that the pattern emerges from interactions between a central neural trajectory controller (VITE circuit) and a peripheral neuromuscularforce controller (FLETE circuit). Both neural models have been derived from simple functional constraints that have led to principled explanations of a wide variety of behavioral and neurobiological data, including, as shown here, the generation of tri-phasic bursts.National Science Foundation (IRI-87-16960); Air Force Office of Scientific Research (URI 90-0175); Defense Advanced Research Projects Agency (AFSOR-90-0083

    Investigation of the contribution of the multi-joint arm stiffness to the motor control deficit experienced in ataxia

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (p. 20).Prior research has shown that the control response of the limbs is affected by the mechanical properties of the limb and the feedback properties of the CNS. Cerebellar ataxia describes a situation in which damage to the cerebellum results in compromised motor control. It is characterized by such things as a clumsy or disturbed gait, a lack of balance and coordination, and unsteady speech patterns; for severe cases of ataxia, gross muscle coordination can degenerate to the point where successful, coordinated movements are not possible. In order to better understand the control deficit experienced by ataxic persons, estimates of the feedback properties of the CNS and the limb-muscle mechanical properties and will be necessary. Specifically, this investigation hopes to determine to what extent ataxia is cause by abnormal effective stiffness. Because ataxic patients do not exhibit deficits in strength or postural maintenance, we hypothesize a priori that the measured stiffness of ataxic subjects will be normal. We test this by conducting postural stiffness study on an ataxic subject, and measuring stiffness for two degrees of subject co-activation - minimal subject co-activation and maximal subject co-activation - and for different equilibrium postures.(cont.) Because the observed kinematic trajectory following neuromuscular activation, as well as the ability of the limb to maintain a given posture in an external force field will be a result of the CNS reflex responses as well as the mechanical properties of the limb-muscle system, we expect all measurements of stiffness to be affected by CNS reflex responses. These reflex responses tend to be noticed between 20 msec (spinal reflexes) and 150 msec (long-loop reflexes) after an environmental disturbance, and because measurements of muscle stiffness require that we wait at least that long after external force application, we expect their contribution to the stiffness measurements to be represented. Our findings show the postural stiffness measured at six static positions in a 0.23 meter by 0.23 meter horizontal workspace and centered 0.45 m in front of the ataxic subject were within (something %) of those measured for a normal subject, and within the range reported by MussaIvaldi. As expected, however, the kinematics of cross-body hand movements were significantly different for the ataxic and normal subject. These results indicate an intact postural regulation for the ataxic subject but a deficit in dynamic control when compared to the normal subject.by Olumuyiwa A. Oni.S.B
    • …
    corecore