30,184 research outputs found

    Learning Robot Activities from First-Person Human Videos Using Convolutional Future Regression

    Full text link
    We design a new approach that allows robot learning of new activities from unlabeled human example videos. Given videos of humans executing the same activity from a human's viewpoint (i.e., first-person videos), our objective is to make the robot learn the temporal structure of the activity as its future regression network, and learn to transfer such model for its own motor execution. We present a new deep learning model: We extend the state-of-the-art convolutional object detection network for the representation/estimation of human hands in training videos, and newly introduce the concept of using a fully convolutional network to regress (i.e., predict) the intermediate scene representation corresponding to the future frame (e.g., 1-2 seconds later). Combining these allows direct prediction of future locations of human hands and objects, which enables the robot to infer the motor control plan using our manipulation network. We experimentally confirm that our approach makes learning of robot activities from unlabeled human interaction videos possible, and demonstrate that our robot is able to execute the learned collaborative activities in real-time directly based on its camera input

    The Anthropomorphic Hand Assessment Protocol (AHAP)

    Get PDF
    The progress in the development of anthropomorphic hands for robotic and prosthetic applications has not been followed by a parallel development of objective methods to evaluate their performance. The need for benchmarking in grasping research has been recognized by the robotics community as an important topic. In this study we present the Anthropomorphic Hand Assessment Protocol (AHAP) to address this need by providing a measure for quantifying the grasping ability of artificial hands and comparing hand designs. To this end, the AHAP uses 25 objects from the publicly available Yale-CMU-Berkeley Object and Model Set thereby enabling replicability. It is composed of 26 postures/tasks involving grasping with the eight most relevant human grasp types and two non-grasping postures. The AHAP allows to quantify the anthropomorphism and functionality of artificial hands through a numerical Grasping Ability Score (GAS). The AHAP was tested with different hands, the first version of the hand of the humanoid robot ARMAR-6 with three different configurations resulting from attachment of pads to fingertips and palm as well as the two versions of the KIT Prosthetic Hand. The benchmark was used to demonstrate the improvements of these hands in aspects like the grasping surface, the grasp force and the finger kinematics. The reliability, consistency and responsiveness of the benchmark have been statistically analyzed, indicating that the AHAP is a powerful tool for evaluating and comparing different artificial hand designs

    Learning at the Ends: From Hand to Tool Affordances in Humanoid Robots

    Full text link
    One of the open challenges in designing robots that operate successfully in the unpredictable human environment is how to make them able to predict what actions they can perform on objects, and what their effects will be, i.e., the ability to perceive object affordances. Since modeling all the possible world interactions is unfeasible, learning from experience is required, posing the challenge of collecting a large amount of experiences (i.e., training data). Typically, a manipulative robot operates on external objects by using its own hands (or similar end-effectors), but in some cases the use of tools may be desirable, nevertheless, it is reasonable to assume that while a robot can collect many sensorimotor experiences using its own hands, this cannot happen for all possible human-made tools. Therefore, in this paper we investigate the developmental transition from hand to tool affordances: what sensorimotor skills that a robot has acquired with its bare hands can be employed for tool use? By employing a visual and motor imagination mechanism to represent different hand postures compactly, we propose a probabilistic model to learn hand affordances, and we show how this model can generalize to estimate the affordances of previously unseen tools, ultimately supporting planning, decision-making and tool selection tasks in humanoid robots. We present experimental results with the iCub humanoid robot, and we publicly release the collected sensorimotor data in the form of a hand posture affordances dataset.Comment: dataset available at htts://vislab.isr.tecnico.ulisboa.pt/, IEEE International Conference on Development and Learning and on Epigenetic Robotics (ICDL-EpiRob 2017

    Drifting perceptual patterns suggest prediction errors fusion rather than hypothesis selection: replicating the rubber-hand illusion on a robot

    Full text link
    Humans can experience fake body parts as theirs just by simple visuo-tactile synchronous stimulation. This body-illusion is accompanied by a drift in the perception of the real limb towards the fake limb, suggesting an update of body estimation resulting from stimulation. This work compares body limb drifting patterns of human participants, in a rubber hand illusion experiment, with the end-effector estimation displacement of a multisensory robotic arm enabled with predictive processing perception. Results show similar drifting patterns in both human and robot experiments, and they also suggest that the perceptual drift is due to prediction error fusion, rather than hypothesis selection. We present body inference through prediction error minimization as one single process that unites predictive coding and causal inference and that it is responsible for the effects in perception when we are subjected to intermodal sensory perturbations.Comment: Proceedings of the 2018 IEEE International Conference on Development and Learning and Epigenetic Robotic

    Learning Social Affordance Grammar from Videos: Transferring Human Interactions to Human-Robot Interactions

    Full text link
    In this paper, we present a general framework for learning social affordance grammar as a spatiotemporal AND-OR graph (ST-AOG) from RGB-D videos of human interactions, and transfer the grammar to humanoids to enable a real-time motion inference for human-robot interaction (HRI). Based on Gibbs sampling, our weakly supervised grammar learning can automatically construct a hierarchical representation of an interaction with long-term joint sub-tasks of both agents and short term atomic actions of individual agents. Based on a new RGB-D video dataset with rich instances of human interactions, our experiments of Baxter simulation, human evaluation, and real Baxter test demonstrate that the model learned from limited training data successfully generates human-like behaviors in unseen scenarios and outperforms both baselines.Comment: The 2017 IEEE International Conference on Robotics and Automation (ICRA

    Contactless medium scale industrial robot collaboration

    Get PDF
    The growing cost of High-Value/Mix and Low Volume (HMLV) industries like Aerospace is heavily based on industrial robots and manual operations done by operators [1]. Robots are excellent in repeatability by HMLV industries need changes with every single product. On the other hand human workforce is good at variability and intelligence but cost a lot as production rate is not comparable to robots and machines. There are flexible systems which have been specifically introduced for this type of industry FLEXA is one of them. But still there is need of collaboration between human and robot to get the flexible and cost effective solution [2]. A comprehensive survey has been conducted specifically on the issue of Human Robot collaboration [3] which laid out many advantages of this approach includes flexibility, cost-effectiveness and use of robot as intelligent assistant. There are several attempts have been made for Human Robot Collaboration for HMLV industry and Chen et al. attempt is one of them
    • …
    corecore