1,675,352 research outputs found

    NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

    Full text link
    Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Action-Attending Graphic Neural Network

    Full text link
    The motion analysis of human skeletons is crucial for human action recognition, which is one of the most active topics in computer vision. In this paper, we propose a fully end-to-end action-attending graphic neural network (A2^2GNN) for skeleton-based action recognition, in which each irregular skeleton is structured as an undirected attribute graph. To extract high-level semantic representation from skeletons, we perform the local spectral graph filtering on the constructed attribute graphs like the standard image convolution operation. Considering not all joints are informative for action analysis, we design an action-attending layer to detect those salient action units (AUs) by adaptively weighting skeletal joints. Herein the filtering responses are parameterized into a weighting function irrelevant to the order of input nodes. To further encode continuous motion variations, the deep features learnt from skeletal graphs are gathered along consecutive temporal slices and then fed into a recurrent gated network. Finally, the spectral graph filtering, action-attending and recurrent temporal encoding are integrated together to jointly train for the sake of robust action recognition as well as the intelligibility of human actions. To evaluate our A2^2GNN, we conduct extensive experiments on four benchmark skeleton-based action datasets, including the large-scale challenging NTU RGB+D dataset. The experimental results demonstrate that our network achieves the state-of-the-art performances

    Semantic Embedding Space for Zero-Shot Action Recognition

    Full text link
    The number of categories for action recognition is growing rapidly. It is thus becoming increasingly hard to collect sufficient training data to learn conventional models for each category. This issue may be ameliorated by the increasingly popular 'zero-shot learning' (ZSL) paradigm. In this framework a mapping is constructed between visual features and a human interpretable semantic description of each category, allowing categories to be recognised in the absence of any training data. Existing ZSL studies focus primarily on image data, and attribute-based semantic representations. In this paper, we address zero-shot recognition in contemporary video action recognition tasks, using semantic word vector space as the common space to embed videos and category labels. This is more challenging because the mapping between the semantic space and space-time features of videos containing complex actions is more complex and harder to learn. We demonstrate that a simple self-training and data augmentation strategy can significantly improve the efficacy of this mapping. Experiments on human action datasets including HMDB51 and UCF101 demonstrate that our approach achieves the state-of-the-art zero-shot action recognition performance.Comment: 5 page
    corecore