27,893 research outputs found

    HandyPose and VehiPose: Pose Estimation of Flexible and Rigid Objects

    Get PDF
    Pose estimation is an important and challenging task in computer vision. Hand pose estimation has drawn increasing attention during the past decade and has been utilized in a wide range of applications including augmented reality, virtual reality, human-computer interaction, and action recognition. Hand pose is more challenging than general human body pose estimation due to the large number of degrees of freedom and the frequent occlusions of joints. To address these challenges, we propose HandyPose, a single-pass, end-to-end trainable architecture for hand pose estimation. Adopting an encoder-decoder framework with multi-level features, our method achieves high accuracy in hand pose while maintaining manageable size complexity and modularity of the network. HandyPose takes a multi-scale approach to representing context by incorporating spatial information at various levels of the network to mitigate the loss of resolution due to pooling. Our advanced multi-level waterfall architecture leverages the efficiency of progressive cascade filtering while maintaining larger fields-of-view through the concatenation of multi-level features from different levels of the network in the waterfall module. The decoder incorporates both the waterfall and multi-scale features for the generation of accurate joint heatmaps in a single stage. Recent developments in computer vision and deep learning have achieved significant progress in human pose estimation, but little of this work has been applied to vehicle pose. We also propose VehiPose, an efficient architecture for vehicle pose estimation, based on a multi-scale deep learning approach that achieves high accuracy vehicle pose estimation while maintaining manageable network complexity and modularity. The VehiPose architecture combines an encoder-decoder architecture with a waterfall atrous convolution module for multi-scale feature representation. It incorporates contextual information across scales and performs the localization of vehicle keypoints in an end-to-end trainable network. Our HandyPose architecture has a baseline of vehipose with an improvement in performance by incorporating multi-level features from different levels of the backbone and introducing novel multi-level modules. HandyPose and VehiPose more thoroughly leverage the image contextual information and deal with the issue of spatial loss of resolution due to successive pooling while maintaining the size complexity, modularity of the network, and preserve the spatial information at various levels of the network. Our results demonstrate state-of-the-art performance on popular datasets and show that HandyPose and VehiPose are robust and efficient architectures for hand and vehicle pose estimation

    Multi-Context Attention for Human Pose Estimation

    Full text link
    In this paper, we propose to incorporate convolutional neural networks with a multi-context attention mechanism into an end-to-end framework for human pose estimation. We adopt stacked hourglass networks to generate attention maps from features at multiple resolutions with various semantics. The Conditional Random Field (CRF) is utilized to model the correlations among neighboring regions in the attention map. We further combine the holistic attention model, which focuses on the global consistency of the full human body, and the body part attention model, which focuses on the detailed description for different body parts. Hence our model has the ability to focus on different granularity from local salient regions to global semantic-consistent spaces. Additionally, we design novel Hourglass Residual Units (HRUs) to increase the receptive field of the network. These units are extensions of residual units with a side branch incorporating filters with larger receptive fields, hence features with various scales are learned and combined within the HRUs. The effectiveness of the proposed multi-context attention mechanism and the hourglass residual units is evaluated on two widely used human pose estimation benchmarks. Our approach outperforms all existing methods on both benchmarks over all the body parts.Comment: The first two authors contribute equally to this wor

    An Expressive Deep Model for Human Action Parsing from A Single Image

    Full text link
    This paper aims at one newly raising task in vision and multimedia research: recognizing human actions from still images. Its main challenges lie in the large variations in human poses and appearances, as well as the lack of temporal motion information. Addressing these problems, we propose to develop an expressive deep model to naturally integrate human layout and surrounding contexts for higher level action understanding from still images. In particular, a Deep Belief Net is trained to fuse information from different noisy sources such as body part detection and object detection. To bridge the semantic gap, we used manually labeled data to greatly improve the effectiveness and efficiency of the pre-training and fine-tuning stages of the DBN training. The resulting framework is shown to be robust to sometimes unreliable inputs (e.g., imprecise detections of human parts and objects), and outperforms the state-of-the-art approaches.Comment: 6 pages, 8 figures, ICME 201
    • …
    corecore