2,021 research outputs found

    The perceptual and attentive impact of delay and jitter in multimedia delivery

    Get PDF
    In this paper we present the results of a study that examines the user’s perception—understood as both information assimilation and subjective satisfaction—of multimedia quality, when impacted by varying network-level parameters (delay and jitter). In addition, we integrate eye-tracking assessment to provide a more complete understanding of user perception of multimedia quality. Results show that delay and jitter significantly affect user satisfaction; variation in video eye path when either no single/obvious point of focus exists or when the point of attention changes dramatically. Lastly, results showed that content variation significantly affected user satisfaction, as well as user information assimilation

    Perceived synchronization of olfactory multimedia

    Get PDF
    This is the post-print version of this Article. The official published version can be accessed from the link below - Copyright @ 2010 IEEEThe concept of synchronization is of fundamental importance in multimedia systems and applications. The focus of this this paper is on olfaction-enhanced multimedia, which concerns itself with associating computer-generated smell with other media. However, the lingering nature of smell, as opposed to the transitory nature of other media objects that multimedia applications are accustomed to, such as video and audio, means that specific attention needs to be given when synchronizing other media content with olfactory data. Consequently, this paper presents the results of an experimental study carried out to explore and investigate the temporal boundaries within which olfactory-data output in an olfaction-enhanced multimedia application can be successfully synchronized with other media objects from an end-user perspective. Results show the presence of two main synchronization regions, and that olfaction ahead of audiovisual content is more tolerable than olfaction behind content

    Congestion Control for Network-Aware Telehaptic Communication

    Full text link
    Telehaptic applications involve delay-sensitive multimedia communication between remote locations with distinct Quality of Service (QoS) requirements for different media components. These QoS constraints pose a variety of challenges, especially when the communication occurs over a shared network, with unknown and time-varying cross-traffic. In this work, we propose a transport layer congestion control protocol for telehaptic applications operating over shared networks, termed as dynamic packetization module (DPM). DPM is a lossless, network-aware protocol which tunes the telehaptic packetization rate based on the level of congestion in the network. To monitor the network congestion, we devise a novel network feedback module, which communicates the end-to-end delays encountered by the telehaptic packets to the respective transmitters with negligible overhead. Via extensive simulations, we show that DPM meets the QoS requirements of telehaptic applications over a wide range of network cross-traffic conditions. We also report qualitative results of a real-time telepottery experiment with several human subjects, which reveal that DPM preserves the quality of telehaptic activity even under heavily congested network scenarios. Finally, we compare the performance of DPM with several previously proposed telehaptic communication protocols and demonstrate that DPM outperforms these protocols.Comment: 25 pages, 19 figure

    Perceived synchronization of mulsemedia services

    Get PDF
    Multimedia synchronization involves a temporal relationship between audio and visual media components. The presentation of "in-sync" data streams is essential to achieve a natural impression, as "out-of-sync" effects are often associated with user quality of experience (QoE) decrease. Recently, multi-sensory media (mulsemedia) has been demonstrated to provide a highly immersive experience for its users. Unlike traditional multimedia, mulsemedia consists of other media types (i.e., haptic, olfaction, taste, etc.) in addition to audio and visual content. Therefore, the goal of achieving high quality mulsemedia transmission is to present no or little synchronization errors between the multiple media components. In order to achieve this ideal synchronization, there is a need for comprehensive knowledge of the synchronization requirements at the user interface. This paper presents the results of a subjective study carried out to explore the temporal boundaries within which haptic and air-flow media objects can be successfully synchronized with video media. Results show that skews between sensorial media and multimedia might still give the effect that the mulsemedia sequence is "in-sync" and provide certain constraints under which synchronization errors might be tolerated. The outcomes of the paper are used to provide recommendations for mulsemedia service providers in order for their services to be associated with acceptable user experience levels, e.g. haptic media could be presented with a delay of up to 1 s behind video content, while air-flow media could be released either 5 s ahead of or 3 s behind video content

    Beyond multimedia adaptation: Quality of experience-aware multi-sensorial media delivery

    Get PDF
    Multiple sensorial media (mulsemedia) combines multiple media elements which engage three or more of human senses, and as most other media content, requires support for delivery over the existing networks. This paper proposes an adaptive mulsemedia framework (ADAMS) for delivering scalable video and sensorial data to users. Unlike existing two-dimensional joint source-channel adaptation solutions for video streaming, the ADAMS framework includes three joint adaptation dimensions: video source, sensorial source, and network optimization. Using an MPEG-7 description scheme, ADAMS recommends the integration of multiple sensorial effects (i.e., haptic, olfaction, air motion, etc.) as metadata into multimedia streams. ADAMS design includes both coarse- and fine-grained adaptation modules on the server side: mulsemedia flow adaptation and packet priority scheduling. Feedback from subjective quality evaluation and network conditions is used to develop the two modules. Subjective evaluation investigated users' enjoyment levels when exposed to mulsemedia and multimedia sequences, respectively and to study users' preference levels of some sensorial effects in the context of mulsemedia sequences with video components at different quality levels. Results of the subjective study inform guidelines for an adaptive strategy that selects the optimal combination for video segments and sensorial data for a given bandwidth constraint and user requirement. User perceptual tests show how ADAMS outperforms existing multimedia delivery solutions in terms of both user perceived quality and user enjoyment during adaptive streaming of various mulsemedia content. In doing so, it highlights the case for tailored, adaptive mulsemedia delivery over traditional multimedia adaptive transport mechanisms

    Multicriteria decision making for enhanced perception-based multimedia communication

    Get PDF
    This paper proposes an approach that integrates technical concerns with user perceptual considerations for intelligent decision making in the construction of tailor-made multimedia communication protocols. Thus, the proposed approach, based on multicriteria decision making (MDM), incorporates not only classical networking considerations, but, indeed, user preferences as well. Furthermore, in keeping with the task-dependent nature consistently identified in multimedia scenarios, the suggested communication protocols also take into account the type of multimedia application that they are transporting. Lastly, this approach also opens the possibility for such protocols to dynamically adapt based on a changing operating environment and user's preferences

    Quality of Service challenges for Voice over Internet Protocol (VoIP) within the wireless environment

    Get PDF

    A MODEL FOR PREDICTING THE PERFORMANCE OF IP VIDEOCONFERENCING

    Get PDF
    With the incorporation of free desktop videoconferencing (DVC) software on the majority of the world's PCs, over the recent years, there has, inevitably, been considerable interest in using DVC over the Internet. The growing popularity of DVC increases the need for multimedia quality assessment. However, the task of predicting the perceived multimedia quality over the Internet Protocol (IP) networks is complicated by the fact that the audio and video streams are susceptible to unique impairments due to the unpredictable nature of IP networks, different types of task scenarios, different levels of complexity, and other related factors. To date, a standard consensus to define the IP media Quality of Service (QoS) has yet to be implemented. The thesis addresses this problem by investigating a new approach to assess the quality of audio, video, and audiovisual overall as perceived in low cost DVC systems. The main aim of the thesis is to investigate current methods used to assess the perceived IP media quality, and then propose a model which will predict the quality of audiovisual experience from prevailing network parameters. This thesis investigates the effects of various traffic conditions, such as, packet loss, jitter, and delay and other factors that may influence end user acceptance, when low cost DVC is used over the Internet. It also investigates the interaction effects between the audio and video media, and the issues involving the lip sychronisation error. The thesis provides the empirical evidence that the subjective mean opinion score (MOS) of the perceived multimedia quality is unaffected by lip synchronisation error in low cost DVC systems. The data-gathering approach that is advocated in this thesis involves both field and laboratory trials to enable the comparisons of results between classroom-based experiments and real-world environments to be made, and to provide actual real-world confirmation of the bench tests. The subjective test method was employed since it has been proven to be more robust and suitable for the research studies, as compared to objective testing techniques. The MOS results, and the number of observations obtained, have enabled a set of criteria to be established that can be used to determine the acceptable QoS for given network conditions and task scenarios. Based upon these comprehensive findings, the final contribution of the thesis is the proposal of a new adaptive architecture method that is intended to enable the performance of IP based DVC of a particular session to be predicted for a given network condition
    corecore