5,114 research outputs found

    Visual Localisation of Mobile Devices in an Indoor Environment under Network Delay Conditions

    Get PDF
    Current progresses in home automation and service robotic environment have highlighted the need to develop interoperability mechanisms that allow a standard communication between the two systems. During the development of the DHCompliant protocol, the problem of locating mobile devices in an indoor environment has been investigated. The communication of the device with the location service has been carried out to study the time delay that web services offer in front of the sockets. The importance of obtaining data from real-time location systems portends that a basic tool for interoperability, such as web services, can be ineffective in this scenario because of the delays added in the invocation of services. This paper is focused on introducing a web service to resolve a coordinates request without any significant delay in comparison with the sockets

    Employing multi-modal sensors for personalised smart home health monitoring.

    Get PDF
    Smart home systems are employed worldwide for a variety of automated monitoring tasks. FITsense is a system that performs personalised smart home health monitoring using sensor data. In this thesis, we expand upon this system by identifying the limits of health monitoring using simple IoT sensors, and establishing deployable solutions for new rich sensing technologies. The FITsense system collects data from FitHomes and generates behavioural insights for health monitoring. To allow the system to expand to arbitrary home layouts, sensing applications must be delivered while relying on sparse "ground truth" data. An enhanced data representation was tested for improving activity recognition performance by encoding observed temporal dependencies. Experiments showed an improvement in activity recognition accuracy over baseline data representations with standard classifiers. Channel State Information (CSI) was chosen as our rich sensing technology for its ambient nature and potential deployability. We developed a novel Python toolkit, called CSIKit, to handle various CSI software implementations, including automatic detection for off-the-shelf CSI formats. Previous researchers proposed a method to address AGC effects on COTS CSI hardware, which we tested and found to improve correlation with a baseline without AGC. This implementation was included in the public release of CSIKit. Two sensing applications were delivered using CSIKit to demonstrate its functionality. Our statistical approach to motion detection with CSI data showed a 32% increase in accuracy over an infrared sensor-based solution using data from 2 unique environments. We also demonstrated the first CSI activity recognition application on a Raspberry Pi 4, which achieved an accuracy of 92% with 11 activity classes. An application was then trained to support movement detection using data from all COTS CSI hardware. This was combined with our signal divider implementation to compare CSI wireless and sensing performance characteristics. The IWL5300 exhibited the most consistent wireless performance, while the ESP32 was found to produce viable CSI data for sensing applications. This establishes the ESP32 as a low-cost high-value hardware solution for CSI sensing. To complete this work, an in-home study was performed using real-world sensor data. An ESP32-based CSI sensor was developed to be integrated into our IoT network. This sensor was tested in a FitHome environment to identify how the data from our existing simple sensors could aid sensor development. We performed an experiment to demonstrate that annotations for CSI data could be gathered with infrared motion sensors. Results showed that our new CSI sensor collected real-world data of similar utility to that collected manually in a controlled environment

    Wifi-based human activity recognition using Raspberry Pi.

    Get PDF
    Ambient, non-intrusive approaches to smart home health monitoring, while limited in capability, are preferred by residents. More intrusive methods of sensing, such as video and wearables, can offer richer data but at the cost of lower resident uptake, in part due to privacy concerns. A radio frequency-based approach to sensing, Channel State Information (CSI),can make use of low cost off-the-shelf WiFi hardware. We have implemented an activity recognition system on the Raspberry Pi 4, one of the world’s most popular embedded boards. We have implemented an classification system using the Pi to demonstrate its capability for activity recognition. This involves performing data collection, interpretation and windowing, before supplying the data to a classification model. In this paper, the capabilities of the Raspberry Pi 4 at performing activity recognition on CSI data are investigated. We have developed and publicly released a data interaction framework, capable of interpreting, processing and visualising data from a range of CSI-capable hardware. Furthermore, CSI data captured for these experiments during various activity performances have also been made publically available. We then train a Deep Convolutional LSTM model to classify the activities. Our experiments, performed in a small apartment, achieve 92% average accuracy on 11 activity classes
    corecore