3 research outputs found

    Human Activity Recognition Using Deep Learning Networks with Enhanced Channel State Information

    Full text link
    © 2018 IEEE. Channel State Information (CSI) is widely used for device free human activity recognition. Feature extraction remains as one of the most challenging tasks in a dynamic and complex environment. In this paper, we propose a human activity recognition scheme using Deep Learning Networks with enhanced Channel State information (DLN-eCSI). We develop a CSI feature enhancement scheme (CFES), including two modules of background reduction and correlation feature enhancement, for preprocessing the data input to the DLN. After cleaning and compressing the signals using CFES, we apply the recurrent neural networking (RNN) to automatically extract deeper features and then the softmax regression algorithm for activity classification. Extensive experiments are conducted to validate the effectiveness of the proposed scheme

    CSI-Based Human Activity Recognition using Convolutional Neural Networks

    Get PDF
    Human activity recognition (HAR) as an emerging technology can have undeniable impacts on several applications such as health monitoring, context-aware systems, transportation, robotics, and smart cities. Among the main research methods in HAR (sensor, image, and WiFi-based), the WiFi-based method has attracted considerable attention due to the ubiquity of WiFi devices. WiFi devices can be utilized to distinguish daily activities such as “walk”, “run”, and “sleep”. These activities affect WiFi signal propagation and can be further used to recognize activities. This paper proposes a Deep Learning method for HAR tasks using channel state information (CSI). A new model is developed in which CSI data are converted to grayscale images. These images are then fed into a 2D-Convolutional Neural Network (CNN) for activity classification. We take advantage of CNN's high accuracy on image classification along with WiFi-based ubiquity. The experimental results demonstrate that our proposed approach achieves acceptable performance in HAR tasks

    A systematic review of non-contact sensing for developing a platform to contain COVID-19

    Get PDF
    The rapid spread of the novel coronavirus disease, COVID-19, and its resulting situation has garnered much effort to contain the virus through scientific research. The tragedy has not yet fully run its course, but it is already clear that the crisis is thoroughly global, and science is at the forefront in the fight against the virus. This includes medical professionals trying to cure the sick at risk to their own health; public health management tracking the virus and guardedly calling on such measures as social distancing to curb its spread; and researchers now engaged in the development of diagnostics, monitoring methods, treatments and vaccines. Recent advances in non-contact sensing to improve health care is the motivation of this study in order to contribute to the containment of the COVID-19 outbreak. The objective of this study is to articulate an innovative solution for early diagnosis of COVID-19 symptoms such as abnormal breathing rate, coughing and other vital health problems. To obtain an effective and feasible solution from existing platforms, this study identifies the existing methods used for human activity and health monitoring in a non-contact manner. This systematic review presents the data collection technology, data preprocessing, data preparation, features extraction, classification algorithms and performance achieved by the various non-contact sensing platforms. This study proposes a non-contact sensing platform for the early diagnosis of COVID-19 symptoms and monitoring of the human activities and health during the isolation or quarantine period. Finally, we highlight challenges in developing non-contact sensing platforms to effectively control the COVID-19 situation
    corecore