18 research outputs found

    Information Privacy Opinions on Twitter: A Cross-Language Study

    Full text link
    The Cambridge Analytica scandal triggered a conversation on Twitter about data practices and their implications. Our research proposes to leverage this conversation to extend the understanding of how information privacy is framed by users worldwide. We collected tweets about the scandal written in Spanish and English between April and July 2018. We created a word embedding to create a reduced multi-dimensional representation of the tweets in each language. For each embedding, we conducted open coding to characterize the semantic contexts of key concepts: "information", "privacy", "company" and "users" (and their Spanish translations). Through a comparative analysis, we found a broader emphasis on privacy-related words associated with companies in English. We also identified more terms related to data collection in English and fewer associated with security mechanisms, control, and risks. Our findings hint at the potential of cross-language comparisons of text to extend the understanding of worldwide differences in information privacy perspectives.Comment: Proceeding CSCW '19: Conference Companion Publication of the 2019 on Computer Supported Cooperative Work and Social Computin

    Probabilistic Bias Mitigation in Word Embeddings

    Full text link
    It has been shown that word embeddings derived from large corpora tend to incorporate biases present in their training data. Various methods for mitigating these biases have been proposed, but recent work has demonstrated that these methods hide but fail to truly remove the biases, which can still be observed in word nearest-neighbor statistics. In this work we propose a probabilistic view of word embedding bias. We leverage this framework to present a novel method for mitigating bias which relies on probabilistic observations to yield a more robust bias mitigation algorithm. We demonstrate that this method effectively reduces bias according to three separate measures of bias while maintaining embedding quality across various popular benchmark semantic tasksComment: 4 pages, 4 figures, Workshop on Human-Centric Machine Learning at NeurIPS 201

    Improving Negative Sampling for Word Representation using Self-embedded Features

    Get PDF
    Although the word-popularity based negative sampler has shown superb performance in the skip-gram model, the theoretical motivation behind oversampling popular (non-observed) words as negative samples is still not well understood. In this paper, we start from an investigation of the gradient vanishing issue in the skipgram model without a proper negative sampler. By performing an insightful analysis from the stochastic gradient descent (SGD) learning perspective, we demonstrate that, both theoretically and intuitively, negative samples with larger inner product scores are more informative than those with lower scores for the SGD learner in terms of both convergence rate and accuracy. Understanding this, we propose an alternative sampling algorithm that dynamically selects informative negative samples during each SGD update. More importantly, the proposed sampler accounts for multi-dimensional self-embedded features during the sampling process, which essentially makes it more effective than the original popularity-based (one-dimensional) sampler. Empirical experiments further verify our observations, and show that our fine-grained samplers gain significant improvement over the existing ones without increasing computational complexity.Comment: Accepted in WSDM 201

    Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

    Full text link
    A lot of the recent success in natural language processing (NLP) has been driven by distributed vector representations of words trained on large amounts of text in an unsupervised manner. These representations are typically used as general purpose features for words across a range of NLP problems. However, extending this success to learning representations of sequences of words, such as sentences, remains an open problem. Recent work has explored unsupervised as well as supervised learning techniques with different training objectives to learn general purpose fixed-length sentence representations. In this work, we present a simple, effective multi-task learning framework for sentence representations that combines the inductive biases of diverse training objectives in a single model. We train this model on several data sources with multiple training objectives on over 100 million sentences. Extensive experiments demonstrate that sharing a single recurrent sentence encoder across weakly related tasks leads to consistent improvements over previous methods. We present substantial improvements in the context of transfer learning and low-resource settings using our learned general-purpose representations.Comment: Accepted at ICLR 201

    Efficient distributed representations beyond negative sampling

    Full text link
    This article describes an efficient method to learn distributed representations, also known as embeddings. This is accomplished minimizing an objective function similar to the one introduced in the Word2Vec algorithm and later adopted in several works. The optimization computational bottleneck is the calculation of the softmax normalization constants for which a number of operations scaling quadratically with the sample size is required. This complexity is unsuited for large datasets and negative sampling is a popular workaround, allowing one to obtain distributed representations in linear time with respect to the sample size. Negative sampling consists, however, in a change of the loss function and hence solves a different optimization problem from the one originally proposed. Our contribution is to show that the sotfmax normalization constants can be estimated in linear time, allowing us to design an efficient optimization strategy to learn distributed representations. We test our approximation on two popular applications related to word and node embeddings. The results evidence competing performance in terms of accuracy with respect to negative sampling with a remarkably lower computational time
    corecore