3,888 research outputs found

    Measuring Information Leakage in Website Fingerprinting Attacks and Defenses

    Full text link
    Tor provides low-latency anonymous and uncensored network access against a local or network adversary. Due to the design choice to minimize traffic overhead (and increase the pool of potential users) Tor allows some information about the client's connections to leak. Attacks using (features extracted from) this information to infer the website a user visits are called Website Fingerprinting (WF) attacks. We develop a methodology and tools to measure the amount of leaked information about a website. We apply this tool to a comprehensive set of features extracted from a large set of websites and WF defense mechanisms, allowing us to make more fine-grained observations about WF attacks and defenses.Comment: In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS '18

    Evaluation of Machine Learning Algorithms for Intrusion Detection System

    Full text link
    Intrusion detection system (IDS) is one of the implemented solutions against harmful attacks. Furthermore, attackers always keep changing their tools and techniques. However, implementing an accepted IDS system is also a challenging task. In this paper, several experiments have been performed and evaluated to assess various machine learning classifiers based on KDD intrusion dataset. It succeeded to compute several performance metrics in order to evaluate the selected classifiers. The focus was on false negative and false positive performance metrics in order to enhance the detection rate of the intrusion detection system. The implemented experiments demonstrated that the decision table classifier achieved the lowest value of false negative while the random forest classifier has achieved the highest average accuracy rate

    The Dark Side(-Channel) of Mobile Devices: A Survey on Network Traffic Analysis

    Full text link
    In recent years, mobile devices (e.g., smartphones and tablets) have met an increasing commercial success and have become a fundamental element of the everyday life for billions of people all around the world. Mobile devices are used not only for traditional communication activities (e.g., voice calls and messages) but also for more advanced tasks made possible by an enormous amount of multi-purpose applications (e.g., finance, gaming, and shopping). As a result, those devices generate a significant network traffic (a consistent part of the overall Internet traffic). For this reason, the research community has been investigating security and privacy issues that are related to the network traffic generated by mobile devices, which could be analyzed to obtain information useful for a variety of goals (ranging from device security and network optimization, to fine-grained user profiling). In this paper, we review the works that contributed to the state of the art of network traffic analysis targeting mobile devices. In particular, we present a systematic classification of the works in the literature according to three criteria: (i) the goal of the analysis; (ii) the point where the network traffic is captured; and (iii) the targeted mobile platforms. In this survey, we consider points of capturing such as Wi-Fi Access Points, software simulation, and inside real mobile devices or emulators. For the surveyed works, we review and compare analysis techniques, validation methods, and achieved results. We also discuss possible countermeasures, challenges and possible directions for future research on mobile traffic analysis and other emerging domains (e.g., Internet of Things). We believe our survey will be a reference work for researchers and practitioners in this research field.Comment: 55 page

    No NAT'd User left Behind: Fingerprinting Users behind NAT from NetFlow Records alone

    Full text link
    It is generally recognized that the traffic generated by an individual connected to a network acts as his biometric signature. Several tools exploit this fact to fingerprint and monitor users. Often, though, these tools assume to access the entire traffic, including IP addresses and payloads. This is not feasible on the grounds that both performance and privacy would be negatively affected. In reality, most ISPs convert user traffic into NetFlow records for a concise representation that does not include, for instance, any payloads. More importantly, large and distributed networks are usually NAT'd, thus a few IP addresses may be associated to thousands of users. We devised a new fingerprinting framework that overcomes these hurdles. Our system is able to analyze a huge amount of network traffic represented as NetFlows, with the intent to track people. It does so by accurately inferring when users are connected to the network and which IP addresses they are using, even though thousands of users are hidden behind NAT. Our prototype implementation was deployed and tested within an existing large metropolitan WiFi network serving about 200,000 users, with an average load of more than 1,000 users simultaneously connected behind 2 NAT'd IP addresses only. Our solution turned out to be very effective, with an accuracy greater than 90%. We also devised new tools and refined existing ones that may be applied to other contexts related to NetFlow analysis
    • …
    corecore