246,900 research outputs found

    Designing structured tight frames via an alternating projection method

    Get PDF
    Tight frames, also known as general Welch-bound- equality sequences, generalize orthonormal systems. Numerous applications - including communications, coding, and sparse approximation- require finite-dimensional tight frames that possess additional structural properties. This paper proposes an alternating projection method that is versatile enough to solve a huge class of inverse eigenvalue problems (IEPs), which includes the frame design problem. To apply this method, one needs only to solve a matrix nearness problem that arises naturally from the design specifications. Therefore, it is the fast and easy to develop versions of the algorithm that target new design problems. Alternating projection will often succeed even if algebraic constructions are unavailable. To demonstrate that alternating projection is an effective tool for frame design, the paper studies some important structural properties in detail. First, it addresses the most basic design problem: constructing tight frames with prescribed vector norms. Then, it discusses equiangular tight frames, which are natural dictionaries for sparse approximation. Finally, it examines tight frames whose individual vectors have low peak-to-average-power ratio (PAR), which is a valuable property for code-division multiple-access (CDMA) applications. Numerical experiments show that the proposed algorithm succeeds in each of these three cases. The appendices investigate the convergence properties of the algorithm

    Group Frames with Few Distinct Inner Products and Low Coherence

    Full text link
    Frame theory has been a popular subject in the design of structured signals and codes in recent years, with applications ranging from the design of measurement matrices in compressive sensing, to spherical codes for data compression and data transmission, to spacetime codes for MIMO communications, and to measurement operators in quantum sensing. High-performance codes usually arise from designing frames whose elements have mutually low coherence. Building off the original "group frame" design of Slepian which has since been elaborated in the works of Vale and Waldron, we present several new frame constructions based on cyclic and generalized dihedral groups. Slepian's original construction was based on the premise that group structure allows one to reduce the number of distinct inner pairwise inner products in a frame with nn elements from n(n1)2\frac{n(n-1)}{2} to n1n-1. All of our constructions further utilize the group structure to produce tight frames with even fewer distinct inner product values between the frame elements. When nn is prime, for example, we use cyclic groups to construct mm-dimensional frame vectors with at most n1m\frac{n-1}{m} distinct inner products. We use this behavior to bound the coherence of our frames via arguments based on the frame potential, and derive even tighter bounds from combinatorial and algebraic arguments using the group structure alone. In certain cases, we recover well-known Welch bound achieving frames. In cases where the Welch bound has not been achieved, and is not known to be achievable, we obtain frames with close to Welch bound performance

    Constructions of biangular tight frames and their relationships with equiangular tight frames

    Full text link
    We study several interesting examples of Biangular Tight Frames (BTFs) - basis-like sets of unit vectors admitting exactly two distinct frame angles (ie, pairwise absolute inner products) - and examine their relationships with Equiangular Tight Frames (ETFs) - basis-like systems which admit exactly one frame angle. We demonstrate a smooth parametrization BTFs, where the corresponding frame angles transform smoothly with the parameter, which "passes through" an ETF answers two questions regarding the rigidity of BTFs. We also develop a general framework of so-called harmonic BTFs and Steiner BTFs - which includes the equiangular cases, surprisingly, the development of this framework leads to a connection with the famous open problem(s) regarding the existence of Mersenne and Fermat primes. Finally, we construct a (chordally) biangular tight set of subspaces (ie, a tight fusion frame) which "Pl\"ucker embeds" into an ETF.Comment: 19 page
    corecore