2 research outputs found

    How to Use Metaheuristics for Design of Symmetric-Key Primitives

    Get PDF
    The ultimate goal of designing a symmetric-key cryptographic primitive often can be formulated as an optimization problem. So far, these problems mainly have been solved with trivial algorithms such as brute force or random search. We show that a more advanced and equally versatile class of search algorithms, called metaheuristics, can help to tackle optimization problems related to design of symmetric-key primitives. We use two nature-inspired metaheuristics, simulated annealing and genetic algorithm, to optimize in terms of security the components of two recent cryptographic designs, SKINNY and AES-round based constructions. The positive outputs of the optimization suggest that metaheuristics are non-trivial tools, well suited for automatic design of primitives

    Programming the Demirci-Selçuk Meet-in-the-Middle Attack with Constraints

    Get PDF
    International audienceCryptanalysis with SAT/SMT, MILP and CP has increased in popularity among symmetric-key cryptanalysts and designers due to its high degree of automation. So far, this approach covers differential, linear, impossible differential, zero-correlation, and integral cryptanaly-sis. However, the Demirci-Selçuk meet-in-the-middle (DS-MITM) attack is one of the most sophisticated techniques that has not been automated with this approach. By an in-depth study of Derbez and Fouque's work on DS-MITM analysis with dedicated search algorithms, we identify the crux of the problem and present a method for automatic DS-MITM attack based on general constraint programming, which allows the crypt-analysts to state the problem at a high level without having to say how it should be solved. Our method is not only able to enumerate distin-guishers but can also partly automate the key-recovery process. This approach makes the DS-MITM cryptanalysis more straightforward and easier to follow, since the resolution of the problem is delegated to off-the-shelf constraint solvers and therefore decoupled from its formulation. We apply the method to SKINNY, TWINE, and LBlock, and we get the currently known best DS-MITM attacks on these ciphers. Moreover, to demonstrate the usefulness of our tool for the block cipher designers, we exhaustively evaluate the security of 8! = 40320 versions of LBlock instantiated with different words permutations in the F functions. It turns out that the permutation used in the original LBlock is one of the 64 permutations showing the strongest resistance against the DS-MITM attack. The whole process is accomplished on a PC in less than 2 hours. The same process is applied to TWINE, and similar results are obtained
    corecore