6 research outputs found

    How the landscape of random job shop scheduling instances depends on the ratio of jobs to machines

    No full text
    Abstract: "We characterize the search landscape of random instances of the job shop scheduling problem (JSSP). Specifically, we investigate how the expected values of (1) backbone size, (2) distance between near-optimal schedules, and (3) makespan of random schedules vary as a function of the job to machine ratio (N/M). For the limiting cases N/M -> 0 and N/M -> [infinity] we provide analytical results, while for intermediate values of N/M we perform experiments. We prove that as N/M -> 0, backbone size approaches 100%, while as N/M -> [infinity] the backbone vanishes. In the process we show that as N/M -> 0 (resp. N/M -> [infinity]), simple priority rules almost surely generate an optimal schedule, suggesting a theoretical account of the 'easy-hard-easy' pattern of typical-case instance difficulty in job shop scheduling. We also draw connections between our theoretical results and the 'big valley' picture of JSSP landscapes.

    How the Landscape of Random Job Shop Scheduling Instances Depends on the Ratio of Jobs to Machines

    No full text
    We characterize the search landscape of random instances of the job shop scheduling problem (JSSP). Specifically, we investigate how the expected values of (1) backbone size, (2) distance between near-optimal schedules, and (3) makespan of random schedules vary as a function of the job to machine ratio ( N N N). For the limiting cases โ†’ 0 and โ†’ โˆž we provide analytica

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Mixed integer programming and adaptive problem solver learned by landscape analysis for clinical laboratory scheduling

    Full text link
    This paper attempts to derive a mathematical formulation for real-practice clinical laboratory scheduling, and to present an adaptive problem solver by leveraging landscape structures. After formulating scheduling of medical tests as a distributed scheduling problem in heterogeneous, flexible job shop environment, we establish a mixed integer programming model to minimize mean test turnaround time. Preliminary landscape analysis sustains that these clinics-orientated scheduling instances are difficult to solve. The search difficulty motivates the design of an adaptive problem solver to reduce repetitive algorithm-tuning work, but with a guaranteed convergence. Yet, under a search strategy, relatedness from exploitation competence to landscape topology is not transparent. Under strategies that impose different-magnitude perturbations, we investigate changes in landscape structure and find that disturbance amplitude, local-global optima connectivity, landscape's ruggedness and plateau size fairly predict strategies' efficacy. Medium-size instances of 100 tasks are easier under smaller-perturbation strategies that lead to smoother landscapes with smaller plateaus. For large-size instances of 200-500 tasks, extant strategies at hand, having either larger or smaller perturbations, face more rugged landscapes with larger plateaus that impede search. Our hypothesis that medium perturbations may generate smoother landscapes with smaller plateaus drives our design of this new strategy and its verification by experiments. Composite neighborhoods managed by meta-Lamarckian learning show beyond average performance, implying reliability when prior knowledge of landscape is unknown
    corecore