12 research outputs found

    How many candidates are needed to make elections hard to manipulate?

    Full text link
    In multiagent settings where the agents have different preferences, preference aggregation is a central issue. Voting is a general method for preference aggregation, but seminal results have shown that all general voting protocols are manipulable. One could try to avoid manipulation by using voting protocols where determining a beneficial manipulation is hard computationally. The complexity of manipulating realistic elections where the number of candidates is a small constant was recently studied (Conitzer 2002), but the emphasis was on the question of whether or not a protocol becomes hard to manipulate for some constant number of candidates. That work, in many cases, left open the question: How many candidates are needed to make elections hard to manipulate? This is a crucial question when comparing the relative manipulability of different voting protocols. In this paper we answer that question for the voting protocols of the earlier study: plurality, Borda, STV, Copeland, maximin, regular cup, and randomized cup. We also answer that question for two voting protocols for which no results on the complexity of manipulation have been derived before: veto and plurality with runoff. It turns out that the voting protocols under study become hard to manipulate at 3 candidates, 4 candidates, 7 candidates, or never

    Computer Science and Game Theory: A Brief Survey

    Full text link
    There has been a remarkable increase in work at the interface of computer science and game theory in the past decade. In this article I survey some of the main themes of work in the area, with a focus on the work in computer science. Given the length constraints, I make no attempt at being comprehensive, especially since other surveys are also available, and a comprehensive survey book will appear shortly.Comment: To appear; Palgrave Dictionary of Economic

    Dichotomy for voting systems

    Get PDF
    AbstractScoring protocols are a broad class of voting systems. Each is defined by a vector (α1,α2,…,αm), α1⩾α2⩾⋯⩾αm, of integers such that each voter contributes α1 points to his/her first choice, α2 points to his/her second choice, and so on, and any candidate receiving the most points is a winner.What is it about scoring-protocol election systems that makes some have the desirable property of being NP-complete to manipulate, while others can be manipulated in polynomial time? We find the complete, dichotomizing answer: Diversity of dislike. Every scoring-protocol election system having two or more point values assigned to candidates other than the favorite—i.e., having ‖{αi|2⩽i⩽m}‖⩾2—is NP-complete to manipulate. Every other scoring-protocol election system can be manipulated in polynomial time. In effect, we show that—other than trivial systems (where all candidates alway tie), plurality voting, and plurality voting's transparently disguised translations—every scoring-protocol election system is NP-complete to manipulate

    The Complexity of Manipulating kk-Approval Elections

    Full text link
    An important problem in computational social choice theory is the complexity of undesirable behavior among agents, such as control, manipulation, and bribery in election systems. These kinds of voting strategies are often tempting at the individual level but disastrous for the agents as a whole. Creating election systems where the determination of such strategies is difficult is thus an important goal. An interesting set of elections is that of scoring protocols. Previous work in this area has demonstrated the complexity of misuse in cases involving a fixed number of candidates, and of specific election systems on unbounded number of candidates such as Borda. In contrast, we take the first step in generalizing the results of computational complexity of election misuse to cases of infinitely many scoring protocols on an unbounded number of candidates. Interesting families of systems include kk-approval and kk-veto elections, in which voters distinguish kk candidates from the candidate set. Our main result is to partition the problems of these families based on their complexity. We do so by showing they are polynomial-time computable, NP-hard, or polynomial-time equivalent to another problem of interest. We also demonstrate a surprising connection between manipulation in election systems and some graph theory problems

    Anyone but Him: The Complexity of Precluding an Alternative

    Get PDF
    Preference aggregation in a multiagent setting is a central issue in both human and computer contexts. In this paper, we study in terms of complexity the vulnerability of preference aggregation to destructive control. That is, we study the ability of an election's chair to, through such mechanisms as voter/candidate addition/suppression/partition, ensure that a particular candidate (equivalently, alternative) does not win. And we study the extent to which election systems can make it impossible, or computationally costly (NP-complete), for the chair to execute such control. Among the systems we study--plurality, Condorcet, and approval voting--we find cases where systems immune or computationally resistant to a chair choosing the winner nonetheless are vulnerable to the chair blocking a victory. Beyond that, we see that among our studied systems no one system offers the best protection against destructive control. Rather, the choice of a preference aggregation system will depend closely on which types of control one wishes to be protected against. We also find concrete cases where the complexity of or susceptibility to control varies dramatically based on the choice among natural tie-handling rules.Comment: Preliminary version appeared in AAAI '05. Also appears as URCS-TR-2005-87
    corecore