63 research outputs found

    How Laminar Frontal Cortex and Basal Ganglia Circuits Interact to Control Planned and Reactive Saccades

    Full text link
    The basal ganglia and frontal cortex together allow animals to learn adaptive responses that acquire rewards when prepotent reflexive responses are insufficient. Anatomical studies show a rich pattern of interactions between the basal ganglia and distinct frontal cortical layers. Analysis of the laminar circuitry of the frontal cortex, together with its interactions with the basal ganglia, motor thalamus, superior colliculus, and inferotemporal and parietal cortices, provides new insight into how these brain regions interact to learn and perform complexly conditioned behaviors. A neural model whose cortical component represents the frontal eye fields captures these interacting circuits. Simulations of the neural model illustrate how it provides a functional explanation of the dynamics of 17 physiologically identified cell types found in these areas. The model predicts how action planning or priming (in cortical layers III and VI) is dissociated from execution (in layer V), how a cue may serve either as a movement target or as a discriminative cue to move elsewhere, and how the basal ganglia help choose among competing actions. The model simulates neurophysiological, anatomical, and behavioral data about how monkeys perform saccadic eye movement tasks, including fixation; single saccade, overlap, gap, and memory-guided saccades; anti-saccades; and parallel search among distractors.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-l-0409, N00014-92-J-1309, N00014-95-1-0657); National Science Foundation (IRI-97-20333)

    START: A Bridge between Emotion Theory and Neurobiology through Dynamic System Modeling

    Full text link
    Lewis proposes "reconceptualization" (p. 1) of how to link the psychology and neurobiology of emotion and cognitive-emotional interactions. His main proposed themes have actually been actively and quantitatively developed in the neural modeling literature for over thirty years. This commentary summarizes some of these themes and points to areas of particularly active research in this area

    Competitive Queing for Planning and Serial Performance

    Full text link

    Autonomous Reinforcement of Behavioral Sequences in Neural Dynamics

    Full text link
    We introduce a dynamic neural algorithm called Dynamic Neural (DN) SARSA(\lambda) for learning a behavioral sequence from delayed reward. DN-SARSA(\lambda) combines Dynamic Field Theory models of behavioral sequence representation, classical reinforcement learning, and a computational neuroscience model of working memory, called Item and Order working memory, which serves as an eligibility trace. DN-SARSA(\lambda) is implemented on both a simulated and real robot that must learn a specific rewarding sequence of elementary behaviors from exploration. Results show DN-SARSA(\lambda) performs on the level of the discrete SARSA(\lambda), validating the feasibility of general reinforcement learning without compromising neural dynamics.Comment: Sohrob Kazerounian, Matthew Luciw are Joint first author

    Rare express saccades in elderly fallers

    Get PDF
    Q Yang1, T T Lê1, E Debay1, C Orssaud2, G Magnier3, Z Kapoula11Groupe IRIS Vision and Motricité Binoculaire, CNRS, Service d’Ophtalmologie-ORL-Stomatologie; 2Service d’Ophtalmologie, Hôpital Européen Georges Pompidou, Paris, France; 3Hôpital de gériatrie Henry Dunant, Paris, FranceObjective: To examine horizontal saccades in elderly subjects with falling history; prior extensive screening was done to recruit subjects with falling history in the absence of pathology.Methods: Twelve elderly with falling history were tested. Two testing conditions were used: the gap (fixation target extinguishes prior to target onset) and the overlap (fixation stays on after target onset) paradigms. Each condition was run at three viewing distances −20 cm, 40 cm, and 150 cm, corresponding to convergence angle at 17.1°, 8.6°, and 2.3°, respectively. Eye movements were recorded with the photoelectric IRIS (Skalar medical).Results: (i) like in healthy elderly subjects, elderly with falling history produce shorter latencies in the gap paradigm than in the overlap paradigm; (ii) their latencies are shorter at near distances (20 and 40 cm) relative to 150 cm for both paradigms; (iii) the novel result is that they fail to produce express latencies even in the conditions (near viewing distance and the gap task) known to promote high rates of express in adults (25%) or in healthy elderly (20%). Seven from the 10 healthy elderly produced express saccades at rates >12%, while 9 of the 12 older subjects with falling history showed no express saccades at all; the remaining 3 subjects showed low rates <12%.Conclusion: The quasi paucity of express saccades could be due to the disequilibrium of complex cortical/subcortical networks needed for making express saccades. The results support models suggesting specific network for express saccades; missing of such optomotor reflex may go along with missing other reflexes as well increasing the chances of falling.Keywords: elderly, falling, saccades, gap/overlap, express saccad

    Different Effects of Double-Pulse TMS of the Posterior Parietal Cortex on Reflexive and Voluntary Saccades

    Get PDF
    Gap and overlap tasks are widely used to promote automatic versus controlled saccades. This study examines the hypothesis that the right posterior parietal cortex (PPC) is differently involved in the two tasks. Twelve healthy students participated in the experiment. We used double-pulse transcranial magnetic stimulation (dTMS) on the right PPC, the first pulse delivered at the target onset and the second 65 or 80 ms later. Each subject performed several blocks of gap or overlap task with or without dTMS. Eye movements were recorded with an Eyelink device. The results show an increase of latency of saccades after dTMS of the right PPC for both tasks but for different time windows (0–80 ms for the gap task, 0–65 ms for the overlap task). Moreover, for rightward saccades the coefficient of variation of latency increased in the gap task but decreased in the overlap task. Finally, in the gap task and for leftward saccades only, dTMS at 0–80 ms decreased the amplitude and the speed of saccades. Although the study is preliminary and needs further investigation in detail, the results support the hypothesis that the right PPC is involved differently in the initiation of the saccades for the two tasks: in the gap task the PPC controls saccade triggering while in the overlap task it could be a relay to the Frontal Eye Fields which is known to control voluntary saccades, e.g., memory-guided and perhaps the controlled saccades in the overlap task The results have theoretical and clinical significance as gap-overlap tasks are easy to perform even in advanced age and in patients with neurodegenerative diseases

    A quantitative evaluation of the AVITEWRITE model of handwriting learning

    Full text link
    Much sensory-motor behavior develops through imitation, as during the learning of handwriting by children. Such complex sequential acts are broken down into distinct motor control synergies, or muscle groups, whose activities overlap in time to generate continuous, curved movements that obey an intense relation between curvature and speed. The Adaptive Vector Integration to Endpoint (AVITEWRITE) model of Grossberg and Paine (2000) proposed how such complex movements may be learned through attentive imitation. The model suggest how frontal, parietal, and motor cortical mechanisms, such as difference vector encoding, under volitional control from the basal ganglia, interact with adaptively-timed, predictive cerebellar learning during movement imitation and predictive performance. Key psycophysical and neural data about learning to make curved movements were simulated, including a decrease in writing time as learning progresses; generation of unimodal, bell-shaped velocity profiles for each movement synergy; size scaling with isochrony, and speed scaling with preservation of the letter shape and the shapes of the velocity profiles; an inverse relation between curvature and tangential velocity; and a Two-Thirds Power Law relation between angular velocity and curvature. However, the model learned from letter trajectories of only one subject, and only qualitative kinematic comparisons were made with previously published human data. The present work describes a quantitative test of AVITEWRITE through direct comparison of a corpus of human handwriting data with the model's performance when it learns by tracing human trajectories. The results show that model performance was variable across subjects, with an average correlation between the model and human data of 89+/-10%. The present data from simulations using the AVITEWRITE model highlight some of its strengths while focusing attention on areas, such as novel shape learning in children, where all models of handwriting and learning of other complex sensory-motor skills would benefit from further research.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Institutes of Health (1-R29-DC02952-01); Office of Naval Research (N00014-92-J-1309, N00014-01-1-0624); Air Force Office of Scientific Research (F49620-01-1-0397); National Institute of Neurological Disorders and Stroke (NS 33173

    From Parallel Sequence Representations to Calligraphic Control: A Conspiracy of Neural Circuits

    Full text link
    Calligraphic writing presents a rich set of challenges to the human movement control system. These challenges include: initial learning, and recall from memory, of prescribed stroke sequences; critical timing of stroke onsets and durations; fine control of grip and contact forces; and letter-form invariance under voluntary size scaling, which entails fine control of stroke direction and amplitude during recruitment and derecruitment of musculoskeletal degrees of freedom. Experimental and computational studies in behavioral neuroscience have made rapid progress toward explaining the learning, planning and contTOl exercised in tasks that share features with calligraphic writing and drawing. This article summarizes computational neuroscience models and related neurobiological data that reveal critical operations spanning from parallel sequence representations to fine force control. Part one addresses stroke sequencing. It treats competitive queuing (CQ) models of sequence representation, performance, learning, and recall. Part two addresses letter size scaling and motor equivalence. It treats cursive handwriting models together with models in which sensory-motor tmnsformations are performed by circuits that learn inverse differential kinematic mappings. Part three addresses fine-grained control of timing and transient forces, by treating circuit models that learn to solve inverse dynamics problems.National Institutes of Health (R01 DC02852

    Individual Differences in Impulsivity Predict Anticipatory Eye Movements

    Get PDF
    Impulsivity is the tendency to act without forethought. It is a personality trait commonly used in the diagnosis of many psychiatric diseases. In clinical practice, impulsivity is estimated using written questionnaires. However, answers to questions might be subject to personal biases and misinterpretations. In order to alleviate this problem, eye movements could be used to study differences in decision processes related to impulsivity. Therefore, we investigated correlations between impulsivity scores obtained with a questionnaire in healthy subjects and characteristics of their anticipatory eye movements in a simple smooth pursuit task. Healthy subjects were asked to answer the UPPS questionnaire (Urgency Premeditation Perseverance and Sensation seeking Impulsive Behavior scale), which distinguishes four independent dimensions of impulsivity: Urgency, lack of Premeditation, lack of Perseverance, and Sensation seeking. The same subjects took part in an oculomotor task that consisted of pursuing a target that moved in a predictable direction. This task reliably evoked anticipatory saccades and smooth eye movements. We found that eye movement characteristics such as latency and velocity were significantly correlated with UPPS scores. The specific correlations between distinct UPPS factors and oculomotor anticipation parameters support the validity of the UPPS construct and corroborate neurobiological explanations for impulsivity. We suggest that the oculomotor approach of impulsivity put forth in the present study could help bridge the gap between psychiatry and physiology

    A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei

    Get PDF
    Recent advances in magnetic resonance imaging methods, including data acquisition, pre-processing and analysis, have benefited research on the contributions of subcortical brain nuclei to human cognition and behavior. At the same time, these developments have led to an increasing need for a high-resolution probabilistic in vivo anatomical atlas of subcortical nuclei. In order to address this need, we constructed high spatial resolution, three-dimensional templates, using high-accuracy diffeomorphic registration of T_1- and T_2- weighted structural images from 168 typical adults between 22 and 35 years old. In these templates, many tissue boundaries are clearly visible, which would otherwise be impossible to delineate in data from individual studies. The resulting delineations of subcortical nuclei complement current histology-based atlases. We further created a companion library of software tools for atlas development, to offer an open and evolving resource for the creation of a crowd-sourced in vivoprobabilistic anatomical atlas of the human brain
    corecore