7 research outputs found

    Design of a combinatorial double auction for local energy markets

    Get PDF
    International audienceLocal energy markets allow neighbours to exchange energy among them. Their traditional implementation using sequential auctions has proven to be inefficient and even counterproductive in some cases. In this paper we propose a combinatorial double auction for the exchange of energy for several time-slots simultaneously. We suppose that participants have a flexible demand; flexibility being obtained, for example, by the usage of a battery. We show the benefits of the approach and we provide an example of how it can improve the utility of all the participants in the market

    Efficient distributed solutions for sharing energy resources at local level: a cooperative game approach

    Get PDF
    International audienceLocal energy generation as well as local energy storage represent key opportunities for energy transition. Nevertheless , their massive deployment is being delayed mainly due to cost reasons. Sharing resources at the local level enables not only reducing these costs significantly, but also to further optimize the cost of the energy exchanged with providers external to the local community. A key question that arises while sharing resources is how to distribute the obtained benefits among the various local players that cooperate. In this paper we propose a cooperative game model, where the players are the holders of energy resources (generation and storage); they cooperate in order to reduce their individual electricity costs. We prove that the core of the game is non-empty; i.e., the proposed cooperative game has a stable solution (distribution of the payoffs among the players) for the case where all players participate in a unique community, and no strict subset of players can obtain a better gain by leaving the community. We propose a formulation of this game, based on the theory of linear production games, which lead us to the two main contributions of this paper. First, we propose an efficient (with linear complexity) centralized algorithm for finding a stable payoff. Second, we provide an efficient distributed algorithm that computes an allocation in the core of the game without any requirement for the players to share any private information. The distributed algorithm requires the exchange of intermediate solutions among players. The topology of the network that enables these exchanges is closely related to the performance of the distributed algorithm. We show, by way of simulations, which are the best topologies for these communication graphs

    Designing Local Energy Market Applications

    Get PDF
    Local energy markets and corresponding information systems are a way to integrate and involve residential customers in the energy transition, which can increase acceptance and drive private investment. This study is focused on the generation of design knowledge for these local energy market user applications in general and specifically to ensure long-term user engagement, which is a crucial success factor to maintain long-term effects. To this end, we derive, instantiate and evaluate seven design principles based on a field implementation with user interaction over 13 months using a design science research approach. The design principles and their instantiations are evaluated based on semi-structured interviews with the participants and a consecutive online experiment. The design principles provide fundamental knowledge for the setup of local energy market user applications and are therefore of value for researchers and practitioners alike

    Market Engineering

    Get PDF
    This open access book provides a broad range of insights on market engineering and information management. It covers topics like auctions, stock markets, electricity markets, the sharing economy, information and emotions in markets, smart decision-making in cities and other systems, and methodological approaches to conceptual modeling and taxonomy development. Overall, this book is a source of inspiration for everybody working on the vision of advancing the science of engineering markets and managing information for contributing to a bright, sustainable, digital world. Markets are powerful and extremely efficient mechanisms for coordinating individuals’ and organizations’ behavior in a complex, networked economy. Thus, designing, monitoring, and regulating markets is an essential task of today’s society. This task does not only derive from a purely economic point of view. Leveraging market forces can also help to tackle pressing social and environmental challenges. Moreover, markets process, generate, and reveal information. This information is a production factor and a valuable economic asset. In an increasingly digital world, it is more essential than ever to understand the life cycle of information from its creation and distribution to its use. Both markets and the flow of information should not arbitrarily emerge and develop based on individual, profit-driven actors. Instead, they should be engineered to serve best the whole society’s goals. This motivation drives the research fields of market engineering and information management. With this book, the editors and authors honor Professor Dr. Christof Weinhardt for his enormous and ongoing contribution to market engineering and information management research and practice. It was presented to him on the occasion of his sixtieth birthday in April 2021. Thank you very much, Christof, for so many years of cooperation, support, inspiration, and friendship
    corecore