1,534 research outputs found

    Digital Teaching and Learning in Higher Education: Culture, Language, Social Issues

    Get PDF
    Digital collaboration has been established in higher education for many years. But when the Covid-19 pandemic struck, digital learning and virtual mobility became of utmost importance for higher education. In the international project "Digital and International Virtual Academic Cooperation" (DIVA), scholars from Israel, Australia, and Germany focused on intercultural learning and online collaboration. Based on their findings, they show how digital arrangements can be used in higher education, how digital teaching can be theorized, and what potential can be gained for post-pandemic teaching

    Digital technologies for behavioral change in sustainability domains: a systematic mapping review

    Get PDF
    Sustainability research has emerged as an interdisciplinary area of knowledge about how to achieve sustainable development, while political actions toward the goal are still in their infancy. A sustainable world is mirrored by a healthy environment in which humans can live without jeopardizing the survival of future generations. The main aim of this contribution was to carry out a systematic mapping (SM) of the applications of digital technologies in promoting environmental sustainability. From a rigorous search of different databases, a set of more than 1000 studies was initially retrieved and then, following screening criteria based on the ROSES (RepOrting standards for Systematic Evidence Syntheses) procedure, a total of N = 37 studies that met the eligibility criteria were selected. The studies were coded according to different descriptive variables, such as digital technology used for the intervention, type of sustainable behavior promoted, research design, and population for whom the intervention was applied. Results showed the emergence of three main clusters of Digital Technologies (i.e., virtual/immersive/augmented reality, gamification, and power-metering systems) and two main Sustainable Behaviors (SBs) (i.e., energy and water-saving, and pollution reduction). The need for a clearer knowledge of which digital interventions work and the reasons why they work (or do not work) does not emerge from the outcomes of this set of studies. Future studies on digital interventions should better detail intervention design characteristics, alongside the reasons underlying design choices, both behaviourally and technologically. This should increase the likelihood of the successful adoption of digital interventions promoting behavioral changes in a more sustainable direction

    Unravelling Diatoms’ Potential for the Bioremediation of Oil Hydrocarbons in Marine Environments

    Get PDF
    The search for practical solutions to alleviate the destructive impact of petroleum hydrocarbons in marine environments is contributing to the implementation of prospecting strategiesfor indigenous microorganisms with biodegradative and bioremediation potential. The levels ofpetroleum contamination entering the marine environment each year have been estimated at around1.3 million tonnes, a figure that is expected to increase by 1.9% annually over the next decade. Therecent interest in decarbonizing our energy system and accelerating the clean energy transitionhas created a demand for greener technologies and strategies to find innovative, sustainable, andcost-effective treatments for the marine environment. Diatoms (Bacillariophyta) are one of the mostdiverse and successful taxa in coastal–marine environments and are a relatively untapped pool ofbiodiversity for biotechnological applications. Recent reports have revealed the significant presenceof diatoms associated with oil spills and petroleum hydrocarbon degradation. Most diatoms cansecrete substantial amounts of exopolysaccharides (EPSs) into their environment, which can act asbiosurfactants that, in addition to oxygen and other enzymes produced by diatoms, create suitableconditions to enhance hydrocarbon solubility and degradation into less toxic compounds in seawater. Recent reports on the biodegradation of aliphatic and aromatic hydrocarbons by diatoms areindicative of the potential of these taxa to achieve success in the bioremediation of hydrocarbons inmarine environments. This review highlights the main attributes and roles that diatoms could play inintegrated strategies for biodegradation and bioremediation of petroleum hydrocarbon pollutantsand as such represent a green, eco-friendly, and sustainable contribution to mitigate damage tobiodiversity and value chains of marine ecosystems

    Automation for network security configuration: state of the art and research trends

    Get PDF
    The size and complexity of modern computer networks are progressively increasing, as a consequence of novel architectural paradigms such as the Internet of Things and network virtualization. Consequently, a manual orchestration and configuration of network security functions is no more feasible, in an environment where cyber attacks can dramatically exploit breaches related to any minimum configuration error. A new frontier is then the introduction of automation in network security configuration, i.e., automatically designing the architecture of security services and the configurations of network security functions, such as firewalls, VPN gateways, etc. This opportunity has been enabled by modern computer networks technologies, such as virtualization. In view of these considerations, the motivations for the introduction of automation in network security configuration are first introduced, alongside with the key automation enablers. Then, the current state of the art in this context is surveyed, focusing on both the achieved improvements and the current limitations. Finally, possible future trends in the field are illustrated

    IoT Transmission Technologies for Distributed Measurement Systems in Critical Environments

    Get PDF
    Distributed measurement systems are spread in the most diverse application scenarios, and Internet of Things (IoT) transmission equipment is usually the enabling technologies for such measurement systems that need to feature wireless connectivity to ensure pervasiveness. Because wireless measurement systems have been deployed for the last years even in critical environments, assessing transmission technologies performances in such contexts is fundamental. Indeed, they are the most challenging ones for wireless data transmission due to their intrinsic attenuation capabilities. Several scenarios in which measurement systems can be deployed are analysed. Firstly, marine contexts are treated by considering above-the-sea wireless links. Such setting can be experienced in whichever application requiring remote monitoring of facilities and assets that are offshore installed. Some instances are offshore sea farming plants, or remote video monitoring systems installed on seamark buoys. Secondly, wireless communications taking place from the underground to the aboveground are covered. This scenario is typical of precision agriculture applications, where the accurate measurement of underground physical parameters is needed to be remotely sent to optimise crops reducing the wastefulness of fundamental resources (e.g., irrigation water). Thirdly, wireless communications occurring from the underwater to the abovewater are addressed. Such situation is inevitable for all those infrastructures monitoring conservation status of underwater species like algae, seaweeds and reef. Then, wireless links happening traversing metal surfaces and structures are tackled. Such context is commonly encountered in asset tracking and monitoring (e.g., containers), or in smart metering applications (e.g., utility meters). Lastly, sundry harsh environments that are typical of industrial monitoring (e.g., vibrating machineries, harsh temperature and humidity rooms, corrosive atmospheres) are tested to validate pervasive measurement infrastructures even in such contexts that are usually experienced in Industrial Internet of Things (IIoT) applications. The performances of wireless measurement systems in such scenarios are tested by sorting out ad-hoc measurement campaigns. Finally, IoT measurement infrastructures respectively deployed in above-the-sea and underground-to-aboveground settings are described to provide real applications in which such facilities can be effectively installed. Nonetheless, the aforementioned application scenarios are only some amid their sundry variety. Indeed, nowadays distributed pervasive measurement systems have to be thought in a broad way, resulting in countless instances: predictive maintenance, smart healthcare, smart cities, industrial monitoring, or smart agriculture, etc. This Thesis aims at showing distributed measurement systems in critical environments to set up pervasive monitoring infrastructures that are enabled by IoT transmission technologies. At first, they are presented, and then the harsh environments are introduced, along with the relative theoretical analysis modelling path loss in such conditions. It must be underlined that this Thesis aims neither at finding better path loss models with respect to the existing ones, nor at improving them. Indeed, path loss models are exploited as they are, in order to derive estimates of losses to understand the effectiveness of the deployed infrastructure. In fact, some transmission tests in those contexts are described, along with providing examples of these types of applications in the field, showing the measurement infrastructures and the relative critical environments serving as deployment sites. The scientific relevance of this Thesis is evident since, at the moment, the literature lacks a comparative study like this, showing both transmission performances in critical environments, and the deployment of real IoT distributed wireless measurement systems in such contexts

    Evaluating Architectural Safeguards for Uncertain AI Black-Box Components

    Get PDF
    Although tremendous progress has been made in Artificial Intelligence (AI), it entails new challenges. The growing complexity of learning tasks requires more complex AI components, which increasingly exhibit unreliable behaviour. In this book, we present a model-driven approach to model architectural safeguards for AI components and analyse their effect on the overall system reliability

    A Generative Framework for Low-Cost Result Validation of Outsourced Machine Learning Tasks

    Full text link
    The growing popularity of Machine Learning (ML) has led to its deployment in various sensitive domains, which has resulted in significant research focused on ML security and privacy. However, in some applications, such as autonomous driving, integrity verification of the outsourced ML workload is more critical--a facet that has not received much attention. Existing solutions, such as multi-party computation and proof-based systems, impose significant computation overhead, which makes them unfit for real-time applications. We propose Fides, a novel framework for real-time validation of outsourced ML workloads. Fides features a novel and efficient distillation technique--Greedy Distillation Transfer Learning--that dynamically distills and fine-tunes a space and compute-efficient verification model for verifying the corresponding service model while running inside a trusted execution environment. Fides features a client-side attack detection model that uses statistical analysis and divergence measurements to identify, with a high likelihood, if the service model is under attack. Fides also offers a re-classification functionality that predicts the original class whenever an attack is identified. We devised a generative adversarial network framework for training the attack detection and re-classification models. The evaluation shows that Fides achieves an accuracy of up to 98% for attack detection and 94% for re-classification.Comment: 16 pages, 11 figure

    Reshaping the Museum of Zoology in Rome by Visual Storytelling and Interactive Iconography

    Get PDF
    This article summarizes the concept of a new immersive and interactive setting for the Zoology Museum in Rome, Italy. The concept, co-designed with all the museum’s curators, is aimed at enhancing the experiential involvement of the visitors by visual storytelling and interactive iconography. Thanks to immersive and interactive technologies designed by Centro Studi Logos, developed by Logosnet and known as e-REALâ and MirrorMeä, zoological findings and memoirs come to life and interact directly with the visitors in order to deepen their understanding, visualize stories and live experiences, and interact with the founder of the Museum (Mr. Arrigoni degli Oddi) who is now a virtualized avatar, or digital human, able to talk with the visitors. All the interactions are powered through simple hand gestures and, in a few cases, vocal inputs that transform into recognized commands from multimedia systems
    • …
    corecore