5,813 research outputs found

    Physical layer security against pollution attack in wireless relay networks using random network coding

    Get PDF
    Network coding can remarkably improve the network capacity by combining incoming packets at intermediate nodes. However, the packet combining also causes the network to be particularly vulnerable to the pollution attack that injects false data into the information flow of the network. This dissertation includes two studies on mitigating pollution attack in two-hop wireless relay network that employs random network coding. First, we investigate how the finite field size affects the network coding performance in terms of the probability of symbol error and the throughput in adversarial networks where the false data is injected by the malicious attackers at source nodes and/or relay nodes. Also, we examine how the optimal field size that minimizes the probability of symbol error or that maximizes throughput changes as the trustworthiness of node or the number of combined packets changes. Second, we propose two schemes for detecting the polluted packets and discarding them before decoding by exploiting physical layer information which is directly overheard from the source nodes. The proposed scheme I applies the threshold-based method to detect the presence of falsely injected data within each packet, while the proposed scheme II compares all received network-coded packets and selects the most trustable ones. Unlike many existing signature-based detection schemes, the proposed schemes do not require that additional information bits are attached into each packet

    Efficient Broadcasting Using Network Coding

    Get PDF
    We consider the problem of broadcasting in an ad hoc wireless network, where all nodes of the network are sources that want to transmit information to all other nodes. Our figure of merit is energy efficiency, a critical design parameter for wireless net- works since it directly affects battery life and thus network life- time. We prove that applying ideas from network coding allows to realize significant benefits in terms of energy efficiency for the problem of broadcasting, and propose very simple algorithms that allow to realize these benefits in practice. In particular, our theo- retical analysis shows that network coding improves performance by a constant factor in fixed networks. We calculate this factor exactly for some canonical configurations. We then show that in networks where the topology dynamically changes, for example due to mobility, and where operations are restricted to simple dis- tributed algorithms, network coding can offer improvements of a factor of , where is the number of nodes in the network. We use the insights gained from the theoretical analysis to propose low-complexity distributed algorithms for realistic wireless ad hoc scenarios, discuss a number of practical considerations, and eval- uate our algorithms through packet level simulation

    An Extended Network Coding Opportunity Discovery Scheme in Wireless Networks

    Full text link
    Network coding is known as a promising approach to improve wireless network performance. How to discover the coding opportunity in relay nodes is really important for it. There are more coding chances, there are more times it can improve network throughput by network coding operation. In this paper, an extended network coding opportunity discovery scheme (ExCODE) is proposed, which is realized by appending the current node ID and all its 1-hop neighbors' IDs to the packet. ExCODE enables the next hop relay node to know which nodes else have already overheard the packet, so it can discover the potential coding opportunities as much as possible. ExCODE expands the region of discovering coding chance to n-hops, and have more opportunities to execute network coding operation in each relay node. At last, we implement ExCODE over the AODV protocol, and efficiency of the proposed mechanism is demonstrated with NS2 simulations, compared to the existing coding opportunity discovery scheme.Comment: 15 pages and 7 figure

    On the Energy Efficiency of LT Codes in Proactive Wireless Sensor Networks

    Full text link
    This paper presents an in-depth analysis on the energy efficiency of Luby Transform (LT) codes with Frequency Shift Keying (FSK) modulation in a Wireless Sensor Network (WSN) over Rayleigh fading channels with pathloss. We describe a proactive system model according to a flexible duty-cycling mechanism utilized in practical sensor apparatus. The present analysis is based on realistic parameters including the effect of channel bandwidth used in the IEEE 802.15.4 standard, active mode duration and computation energy. A comprehensive analysis, supported by some simulation studies on the probability mass function of the LT code rate and coding gain, shows that among uncoded FSK and various classical channel coding schemes, the optimized LT coded FSK is the most energy-efficient scheme for distance d greater than the pre-determined threshold level d_T , where the optimization is performed over coding and modulation parameters. In addition, although the optimized uncoded FSK outperforms coded schemes for d < d_T , the energy gap between LT coded and uncoded FSK is negligible for d < d_T compared to the other coded schemes. These results come from the flexibility of the LT code to adjust its rate to suit instantaneous channel conditions, and suggest that LT codes are beneficial in practical low-power WSNs with dynamic position sensor nodes.Comment: accepted for publication in IEEE Transactions on Signal Processin

    Cooperative network-coding system for wireless sensor networks

    Get PDF
    Describes a cooperative network coding system for wireless sensor networks. In this paper, we propose two practical power) and bandwidth)efficient systems based on amplify)and)forward (AF) and decode)and)forward (DF) schemes to address the problem of information exchange via a relay. The key idea is to channel encode each source’s message by using a high)performance non)binary turbo code based on Partial Unit Memory (PUM) codes to enhance the bit)error)rate performance, then reduce the energy consumption and increase spectrum efficiency by using network coding (NC) to combine individual nodes’ messages at the relay before forwarding to the destination. Two simple and low complexity physical layer NC schemes are proposed based on combinations of received source messages at the relay. We also present the theoretical limits and numerical analysis of the proposed schemes. Simulation results under Additive White Gaussian Noise, confirm that the proposed schemes achieve significant bandwidth savings and fewer transmissions over the benchmark systems which do not resort to NC. Theoretical limits for capacity and Signal to Noise Ratio behaviour for the proposed schemes are derived. The paper also proposes a cooperative strategy that is useful when insufficient combined messages are received at a node to recover the desired source messages, thus enabling the system to retrieve all packets with significantly fewer retransmission request messages
    • …
    corecore