9,119 research outputs found

    DeepWear: Adaptive Local Offloading for On-Wearable Deep Learning

    Full text link
    Due to their on-body and ubiquitous nature, wearables can generate a wide range of unique sensor data creating countless opportunities for deep learning tasks. We propose DeepWear, a deep learning (DL) framework for wearable devices to improve the performance and reduce the energy footprint. DeepWear strategically offloads DL tasks from a wearable device to its paired handheld device through local network. Compared to the remote-cloud-based offloading, DeepWear requires no Internet connectivity, consumes less energy, and is robust to privacy breach. DeepWear provides various novel techniques such as context-aware offloading, strategic model partition, and pipelining support to efficiently utilize the processing capacity from nearby paired handhelds. Deployed as a user-space library, DeepWear offers developer-friendly APIs that are as simple as those in traditional DL libraries such as TensorFlow. We have implemented DeepWear on the Android OS and evaluated it on COTS smartphones and smartwatches with real DL models. DeepWear brings up to 5.08X and 23.0X execution speedup, as well as 53.5% and 85.5% energy saving compared to wearable-only and handheld-only strategies, respectively

    Modelling the Scene Dependent Imaging in Cameras with a Deep Neural Network

    Full text link
    We present a novel deep learning framework that models the scene dependent image processing inside cameras. Often called as the radiometric calibration, the process of recovering RAW images from processed images (JPEG format in the sRGB color space) is essential for many computer vision tasks that rely on physically accurate radiance values. All previous works rely on the deterministic imaging model where the color transformation stays the same regardless of the scene and thus they can only be applied for images taken under the manual mode. In this paper, we propose a data-driven approach to learn the scene dependent and locally varying image processing inside cameras under the automode. Our method incorporates both the global and the local scene context into pixel-wise features via multi-scale pyramid of learnable histogram layers. The results show that we can model the imaging pipeline of different cameras that operate under the automode accurately in both directions (from RAW to sRGB, from sRGB to RAW) and we show how we can apply our method to improve the performance of image deblurring.Comment: To appear in ICCV 201

    Hardware-Aware Machine Learning: Modeling and Optimization

    Full text link
    Recent breakthroughs in Deep Learning (DL) applications have made DL models a key component in almost every modern computing system. The increased popularity of DL applications deployed on a wide-spectrum of platforms have resulted in a plethora of design challenges related to the constraints introduced by the hardware itself. What is the latency or energy cost for an inference made by a Deep Neural Network (DNN)? Is it possible to predict this latency or energy consumption before a model is trained? If yes, how can machine learners take advantage of these models to design the hardware-optimal DNN for deployment? From lengthening battery life of mobile devices to reducing the runtime requirements of DL models executing in the cloud, the answers to these questions have drawn significant attention. One cannot optimize what isn't properly modeled. Therefore, it is important to understand the hardware efficiency of DL models during serving for making an inference, before even training the model. This key observation has motivated the use of predictive models to capture the hardware performance or energy efficiency of DL applications. Furthermore, DL practitioners are challenged with the task of designing the DNN model, i.e., of tuning the hyper-parameters of the DNN architecture, while optimizing for both accuracy of the DL model and its hardware efficiency. Therefore, state-of-the-art methodologies have proposed hardware-aware hyper-parameter optimization techniques. In this paper, we provide a comprehensive assessment of state-of-the-art work and selected results on the hardware-aware modeling and optimization for DL applications. We also highlight several open questions that are poised to give rise to novel hardware-aware designs in the next few years, as DL applications continue to significantly impact associated hardware systems and platforms.Comment: ICCAD'18 Invited Pape

    IoT for Green Building Management

    Full text link
    Buildings consume 60% of global electricity. However, current building management systems (BMSs) are highly expensive and difficult to justify for small to medium-sized buildings. As such, the Internet of Things (IoT), which can monitor and collect a large amount of data on different contexts of a building and feed the data to the processor of the BMS, provides a new opportunity to integrate intelligence into the BMS to monitor and manage the energy consumption of the building in a cost-effective manner. Although an extensive literature is available on IoT based BMS and applications of signal processing techniques for some aspects of building energy management separately, detailed study on their integration to address the overall BMS is quite limited. As such, the proposed paper will address this gap by providing an overview of an IoT based BMS leveraging signal processing and machine learning techniques. It is demonstrated how to extract high-level building occupancy information through simple and low-cost IoT sensors and studied the impact of human activities on energy usage of a building, which can be exploited to design energy conservation measures to reduce the building's energy consumption.Comment: 20 pages, 7 figures, 1 table, accepted journal pape

    Local Light Field Fusion: Practical View Synthesis with Prescriptive Sampling Guidelines

    Full text link
    We present a practical and robust deep learning solution for capturing and rendering novel views of complex real world scenes for virtual exploration. Previous approaches either require intractably dense view sampling or provide little to no guidance for how users should sample views of a scene to reliably render high-quality novel views. Instead, we propose an algorithm for view synthesis from an irregular grid of sampled views that first expands each sampled view into a local light field via a multiplane image (MPI) scene representation, then renders novel views by blending adjacent local light fields. We extend traditional plenoptic sampling theory to derive a bound that specifies precisely how densely users should sample views of a given scene when using our algorithm. In practice, we apply this bound to capture and render views of real world scenes that achieve the perceptual quality of Nyquist rate view sampling while using up to 4000x fewer views. We demonstrate our approach's practicality with an augmented reality smartphone app that guides users to capture input images of a scene and viewers that enable realtime virtual exploration on desktop and mobile platforms.Comment: SIGGRAPH 2019. Project page with video and code: http://people.eecs.berkeley.edu/~bmild/llff

    Leveraging Machine Learning and Big Data for Smart Buildings: A Comprehensive Survey

    Full text link
    Future buildings will offer new convenience, comfort, and efficiency possibilities to their residents. Changes will occur to the way people live as technology involves into people's lives and information processing is fully integrated into their daily living activities and objects. The future expectation of smart buildings includes making the residents' experience as easy and comfortable as possible. The massive streaming data generated and captured by smart building appliances and devices contains valuable information that needs to be mined to facilitate timely actions and better decision making. Machine learning and big data analytics will undoubtedly play a critical role to enable the delivery of such smart services. In this paper, we survey the area of smart building with a special focus on the role of techniques from machine learning and big data analytics. This survey also reviews the current trends and challenges faced in the development of smart building services

    Personalized Exposure Control Using Adaptive Metering and Reinforcement Learning

    Full text link
    We propose a reinforcement learning approach for real-time exposure control of a mobile camera that is personalizable. Our approach is based on Markov Decision Process (MDP). In the camera viewfinder or live preview mode, given the current frame, our system predicts the change in exposure so as to optimize the trade-off among image quality, fast convergence, and minimal temporal oscillation. We model the exposure prediction function as a fully convolutional neural network that can be trained through Gaussian policy gradient in an end-to-end fashion. As a result, our system can associate scene semantics with exposure values; it can also be extended to personalize the exposure adjustments for a user and device. We improve the learning performance by incorporating an adaptive metering module that links semantics with exposure. This adaptive metering module generalizes the conventional spot or matrix metering techniques. We validate our system using the MIT FiveK and our own datasets captured using iPhone 7 and Google Pixel. Experimental results show that our system exhibits stable real-time behavior while improving visual quality compared to what is achieved through native camera control.Comment: 17 pages, 20 figure

    Handheld Multi-Frame Super-Resolution

    Full text link
    Compared to DSLR cameras, smartphone cameras have smaller sensors, which limits their spatial resolution; smaller apertures, which limits their light gathering ability; and smaller pixels, which reduces their signal-to noise ratio. The use of color filter arrays (CFAs) requires demosaicing, which further degrades resolution. In this paper, we supplant the use of traditional demosaicing in single-frame and burst photography pipelines with a multiframe super-resolution algorithm that creates a complete RGB image directly from a burst of CFA raw images. We harness natural hand tremor, typical in handheld photography, to acquire a burst of raw frames with small offsets. These frames are then aligned and merged to form a single image with red, green, and blue values at every pixel site. This approach, which includes no explicit demosaicing step, serves to both increase image resolution and boost signal to noise ratio. Our algorithm is robust to challenging scene conditions: local motion, occlusion, or scene changes. It runs at 100 milliseconds per 12-megapixel RAW input burst frame on mass-produced mobile phones. Specifically, the algorithm is the basis of the Super-Res Zoom feature, as well as the default merge method in Night Sight mode (whether zooming or not) on Google's flagship phone.Comment: 24 pages, accepted to Siggraph 2019 Technical Papers progra

    Impact of Physical Activity on Sleep:A Deep Learning Based Exploration

    Full text link
    The importance of sleep is paramount for maintaining physical, emotional and mental wellbeing. Though the relationship between sleep and physical activity is known to be important, it is not yet fully understood. The explosion in popularity of actigraphy and wearable devices, provides a unique opportunity to understand this relationship. Leveraging this information source requires new tools to be developed to facilitate data-driven research for sleep and activity patient-recommendations. In this paper we explore the use of deep learning to build sleep quality prediction models based on actigraphy data. We first use deep learning as a pure model building device by performing human activity recognition (HAR) on raw sensor data, and using deep learning to build sleep prediction models. We compare the deep learning models with those build using classical approaches, i.e. logistic regression, support vector machines, random forest and adaboost. Secondly, we employ the advantage of deep learning with its ability to handle high dimensional datasets. We explore several deep learning models on the raw wearable sensor output without performing HAR or any other feature extraction. Our results show that using a convolutional neural network on the raw wearables output improves the predictive value of sleep quality from physical activity, by an additional 8% compared to state-of-the-art non-deep learning approaches, which itself shows a 15% improvement over current practice. Moreover, utilizing deep learning on raw data eliminates the need for data pre-processing and simplifies the overall workflow to analyze actigraphy data for sleep and physical activity research

    An iterative scheme for feature based positioning using a weighted dissimilarity measure

    Full text link
    We propose an iterative scheme for feature-based positioning using a new weighted dissimilarity measure with the goal of reducing the impact of large errors among the measured or modeled features. The weights are computed from the location-dependent standard deviations of the features and stored as part of the reference fingerprint map (RFM). Spatial filtering and kernel smoothing of the kinematically collected raw data allow efficiently estimating the standard deviations during RFM generation. In the positioning stage, the weights control the contribution of each feature to the dissimilarity measure, which in turn quantifies the difference between the set of online measured features and the fingerprints stored in the RFM. Features with little variability contribute more to the estimated position than features with high variability. Iterations are necessary because the variability depends on the location, and the location is initially unknown when estimating the position. Using real WiFi signal strength data from extended test measurements with ground truth in an office building, we show that the standard deviations of these features vary considerably within the region of interest and are neither simple functions of the signal strength nor of the distances from the corresponding access points. This is the motivation to include the empirical standard deviations in the RFM. We then analyze the deviations of the estimated positions with and without the location-dependent weighting. In the present example the maximum radial positioning error from ground truth are reduced by 40% comparing to kNN without the weighted dissimilarity measure.Comment: 18 pages, 9 figures, and 1 tabl
    corecore