85,234 research outputs found

    Host-microbe interaction in the gastrointestinal tract

    Get PDF
    The gastrointestinal tract is a highly complex organ in which multiple dynamic physiological processes are tightly coordinated while interacting with a dense and extremely diverse microbial population. From establishment in early life, through to host-microbe symbiosis in adulthood, the gut microbiota plays a vital role in our development and health. The effect of the microbiota on gut development and physiology is highlighted by anatomical and functional changes in germ-free mice, affecting the gut epithelium, immune system, and enteric nervous system. Microbial colonisation promotes competent innate and acquired mucosal immune systems, epithelial renewal, barrier integrity, and mucosal vascularisation and innervation. Interacting or shared signalling pathways across different physiological systems of the gut could explain how all these changes are coordinated during postnatal colonisation, or after the introduction of microbiota into germ-free models. The application of cell-based in vitro experimental systems and mathematical modelling can shed light on the molecular and signalling pathways which regulate the development and maintenance of homeostasis in the gut and beyond. This article is protected by copyright. All rights reserved

    Nutrient cross-feeding in the microbial world.

    Get PDF
    The stability and function of a microbial community depends on nutritional interactions among community members such as the cross-feeding of essential small molecules synthesized by a subset of the population. In this review, we describe examples of microbe-microbe and microbe-host cofactor cross-feeding, a type of interaction that influences the forms of metabolism carried out within a community. Cofactor cross-feeding can contribute to both the health and nutrition of a host organism, the virulence and persistence of pathogens, and the composition and function of environmental communities. By examining the impact of shared cofactors on microbes from pure culture to natural communities, we stand to gain a better understanding of the interactions that link microbes together, which may ultimately be a key to developing strategies for manipulating microbial communities with human health, agricultural, and environmental implications

    Skin microbiota: a source of disease or defence?

    No full text
    Microbes found on the skin are usually regarded as pathogens, potential pathogens or innocuous symbiotic organisms. Advances in microbiology and immunology are revising our understanding of the molecular mechanisms of microbial virulence and the specific events involved in the host-microbe interaction. Current data contradict some historical classifications of cutaneous microbiota and suggest that these organisms may protect the host, defining them not as simple symbiotic microbes but rather as mutualistic. This review will summarize current information on bacterial skin flora including Staphylococcus, Corynebacterium, Propionibacterium, Streptococcus and Pseudomonas. Specifically, the review will discuss our current understanding of the cutaneous microbiota as well as shifting paradigms in the interpretation of the roles microbes play in skin health and disease

    The genome sequence and effector complement of the flax rust pathogen Melampsora lini

    Get PDF
    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their hosts.This work was funded by a grant from the CSIRO Transformational Biology Capability Platform to Adnane Nemri. Claire Anderson was supported by an ARC Discovery Grant (DP120104044) awarded to David A. Jones and Peter N. Dodds

    Beyond self-eating: The control of nonautophagic functions and signaling pathways by autophagy-related proteins.

    Get PDF
    The identification of conserved autophagy-related proteins (ATGs) that mediate bulk degradation of cytosolic material laid the foundation for breakthroughs linking autophagy to a litany of physiological processes and disease conditions. Recent discoveries are revealing that these same ATGs orchestrate processes that are related to, and yet clearly distinct from, classic autophagy. Autophagy-related functions include secretion, trafficking of phagocytosed material, replication and egress of viral particles, and regulation of inflammatory and immune signaling cascades. Here, we define common processes dependent on ATGs, and discuss the challenges in mechanistically separating autophagy from these related pathways. Elucidating the molecular events that distinguish how individual ATGs function promises to improve our understanding of the origin of diseases ranging from autoimmunity to cancer

    GuaB Activity Is Required in Rhizobium tropici During the Early Stages of Nodulation of Determinate Nodules but Is Dispensable for the Sinorhizobium meliloti–Alfalfa Symbiotic Interaction

    Get PDF
    The guaB mutant strain Rhizobium tropici CIAT8999-10T is defective in symbiosis with common bean, forming nodules that lack rhizobial content. In order to investigate the timing of the guaB requirement during the nodule formation on the host common bean by the strain CIAT899-10.T, we constructed gene fusions in which the guaB gene is expressed under the control of the symbiotic promoters nodA, bacA, and nifH. Our data indicated that the guaB is required from the early stages of nodulation because full recovery of the wild-type phenotype was accomplished by the nodA-guaB fusion. In addition, we have constructed a guaB mutant derived from Sinorhizobium meliloti 1021, and shown that, unlike R. tropici, the guaB S. meliloti mutant is auxotrophic for guanine and induces wild-type nodules on alfalfa and Medicago truncatula. The guaB R. tropici mutant also is defective in its symbiosis with Macroptilium atropurpureum and Vigna unguiculata but normal with Leucaena leucocephala. These results show that the requirement of the rhizobial guaB for symbiosis is found to be associated with host plants that form determinate type of nodules.Fil: Collavino, Mónica Mariana. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaFil: Riccillo, Pablo M.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Grasso, Daniel Horacio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Crespi, Martín. Centre National de la Recherche Scientifique; FranciaFil: Aguilar, Orlando Mario. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentin
    corecore