3 research outputs found

    Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge

    Get PDF
    International audienceWe consider the problem of online linear regression in the stochastic setting. We derive high probability regret bounds for online ridge regression and the forward algorithm. This enables us to compare online regression algorithms more accurately and eliminate assumptions of bounded observations and predictions. Our study advocates for the use of the forward algorithm in lieu of ridge due to its enhanced bounds and robustness to the regularization parameter. Moreover, we explain how to integrate it in algorithms involving linear function approximation to remove a boundedness assumption without deteriorating theoretical bounds. We showcase this modification in linear bandit settings where it yields improved regret bounds. Last, we provide numerical experiments to illustrate our results and endorse our intuitions

    Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge

    Get PDF
    International audienceWe consider the problem of online linear regression in the stochastic setting. We derive high probability regret bounds for online ridge regression and the forward algorithm. This enables us to compare online regression algorithms more accurately and eliminate assumptions of bounded observations and predictions. Our study advocates for the use of the forward algorithm in lieu of ridge due to its enhanced bounds and robustness to the regularization parameter. Moreover, we explain how to integrate it in algorithms involving linear function approximation to remove a boundedness assumption without deteriorating theoretical bounds. We showcase this modification in linear bandit settings where it yields improved regret bounds. Last, we provide numerical experiments to illustrate our results and endorse our intuitions

    Uniform regret bounds over RdR^d for the sequential linear regression problem with the square loss

    Get PDF
    International audienceWe consider the setting of online linear regression for arbitrary deterministic sequences, with the square loss. We are interested in the aim set by Bartlett et al. (2015): obtain regret bounds that hold uniformly over all competitor vectors. When the feature sequence is known at the beginning of the game, they provided closed-form regret bounds of 2d B^2 ln T + O(1), where T is the number of rounds and B is a bound on the observations. Instead, we derive bounds with an optimal constant of 1 in front of the d B^2 ln T term. In the case of sequentially revealed features, we also derive an asymptotic regret bound of d B^2 ln T for any individual sequence of features and bounded observations. All our algorithms are variants of the online non-linear ridge regression forecaster, either with a data-dependent regularization or with almost no regularization
    corecore